

GE: SEASEASYD/SHUTTERSTOCK

They across space and time: Capturing the nature of a multifaceted pronoun

Dominic Schmitz (he/him)

English Language and Linguistics, Heinrich Heine University Düsseldorf

5th Bremen Student Conference in English Linguistics

11/07/2025

Why study singular they?

- 1. Sociopolitical lightning rod (e.g. Baron 2021)
 - in recent years, pronouns have become a highly visible and politicised topic, not only in academia, but in public discourse, education, and legislation
 - the choice or imposition of pronouns often functions as a proxy debate for broader anxieties about gender diversity, normativity, and identity politics
- 2. site of queer visibility (e.g. Zimman 2019)
 - singular *they* challenges binary language structures, thereby unsettling hegemonic expectations of gendered language
 - it is frequently used by nonbinary and gender-diverse individuals, becoming a form of linguistic self-determination

Why study singular they?

- 3. socially loaded words (e.g. Saguy & Williams 2022)
 - as closed-class function words, pronouns often escape conscious scrutiny, yet they do a lot of social work
 - changes in pronoun use signal shifting ideologies and normative resistance
- 4. the grammar-politics interface (e.g. Bodine 1975)
 - it raises crucial questions about how language change intersects with social justice and normativity
 - who gets to determine what is "grammatical"? who is erased or legitimised by pronoun systems?
- 5. methodological importance (e.g. Foertsch & Gernsbacher 1997)
 - studying they from a cognitive perspective allows us to see how socially significant linguistic items are represented and handled in real-time language use

Types of singular they

- in contemporary English, one can differentiate at least four types of singular *they* (Conrod 2020)
 - generic indefinite

<u>Someone</u> ran out of the classroom, but they forgot their backpack.

• generic definite

<u>The ideal student completes the homework, but not if **they** have an emergency.</u>

specific ungendered

<u>The math teacher</u> is talented, but **they** hand back grades late.

specific gendered

James is great at laundry, but they never wash their dishes.

Unpacking singular they in three studies

Semantics

What does generic *they* mean? Is it semantically more similar to *he*, *she*, or plural *they*?

Schmitz, D. (2025). Pronoun comprehension from a discriminative perspective: A proof of concept. In D. Schmitz, S. D. Stein, & V. Schneider (Eds.), *Linguistic intersections of language and gender: Of gender bias and gender fairness* (pp. 95–110). düsseldorf university press. doi: 10.1515/9783111388694-006/html

Distributional semantics

- to capture the semantics of pronouns, the idea of **distributional semantics** is used
- distributional semantics assumes that "you shall know a word by the company it keeps" (Firth 1957)
 - words which occur in similar contexts have similar meanings
 - words which occur in non-similar contexts have non-similar meanings
- judging from the counts of co-occurring words, *dog* and *cat* are somewhat similar

(tail, pet) but not identical (bark, meow) in meaning

	bark	meow	tail	pet
dog	15	0	12	20
cat	0	18	10	22

• different algorithms, e.g. naive discriminative learning (Baayen et al., 2011) and instance

- NDL follows the Rescorla-Wagner rules (Rescorla & Wagner, 1972; Wagner & Rescorla, 1972)
- most importantly, these rules state that
 - outcomes are predicted by cues
 - the associative strength between an outcome and a cue is represented by a single number

red	yellow	orange	purple	blue	sweet	sour	round	long
1					1		1	
	1				1			1
		1				1	1	
			1		1		1	
				1	1		1	
1					1			1
	1					1	1	1

red	yellow	orange	purple	blue	sweet	sour	round	long
30					30		30	
	15				15			15
		18				18	18	
			10		10		10	
				5	5		5	
45					45		45	45
	20					20	20	20

	red	yellow	orange	purple	blue	sweet	sour	round	long
Č	29	1				30		30	
		15				15			15
			18				18	18	
				10		10		10	
					5	5		5	
	45					45		45	45
		20					20	20	20

	red	yellow	orange	purple	blue	sweet	sour	round	long
Č	29	1				29	1	30	
		15				15			15
			18				18	18	
				10		10		10	
					5	5		5	
	45					45		45	45
		20					20	20	20

red	yellow	orange	purple	blue	sweet	sour	round	long
29	1	-1	-3	-2	29	1	30	-1
-10	15	-10	-8	-6	15	-11	-5	15
-6	-7	18	-14	-15	3	15	18	-2
-5	-1	-6	10	-9	5	5	10	-7
-6	-9	-19	2	3	4	1	5	-5
45	-6	-9	-14	-1	25	20	45	45
-1	20	-5	-6	-8	-4	20	20	20

red	yellow	orange	purple	blue	sweet	sour	round	long
29	1	-1	-3	-2	29	1	30	-1
-10	15	-10	-8	-6	15	-11	-5	15
-6	-7	18	-14	-15	3	15	18	-2
-5	-1	-6	10	-9	5	5	10	-7
-6	-9	-19	2	3	4	1	5	-5
45	-6	-9	-14	-1	25	20	45	45
-1	20	-5	-6	-8	-4	20	20	20

	red	yellow	orange	purple	blue	sweet	sour
apple	29	1	-1	-3	-2	29	1
banana	-10	15	-10	-8	-6	15	-11
orange	-6	-7	18	-14	-15	3	15
grape	-5	-1	-6	10	-9	5	5
blueberry	-6	-9	-19	2	3	4	1
strawberry	45	-6	-9	-14	-1	25	20
lemon	-1	20	-5	-6	-8	-4	20

- however: 1 vector per word = 1 vector per pronoun
- potentially very different semantics of pronoun attestations are conflated into one vector representation
- this is an issue!
 - → pronouns are assumed to inherit the semantics of their referents

- the solution: instance vectors
 - take *n* preceding and following words
 - get the semantic vectors of these words
 - compute the mean of these vectors
 - = instance vector

- the solution: instance vectors
 - take *n* preceding and following words
 - get the semantic vectors of these words
 - compute the mean of these vectors
 - = instance vector

$$n = 2$$

- the solution: instance vectors
 - take *n* preceding and following words
 - get the semantic vectors of these words
 - compute the mean of these vectors
 - = instance vector

n = 5

- the solution: instance vectors
 - take *n* preceding and following words
 - get the semantic vectors of these words
 - compute the mean of these vectors
 - = instance vector

- for the present study
 - *n* = 5
 - preceding and following semantic vectors: via NDL

Corpus

- small corpus based on COCA (Davies, 2008-)
 - 17,805 word form tokens
 - 1,000 sentences
 - 50 + attestations of each target pronoun

he, she, generic they, plural they

• pronoun attestations were manually checked for number and genericity

Semantic similarity

 to check how similar the four pronouns are, their vectors' mean correlations are computed: higher correlation → higher semantic similarity

	she	generic they	plural they
he	0.94	0.53	0.60
she		0.57	0.59
generic they			0.58

- he and she are, unsurprisingly, very similar
- *he* is as similar to generic *they* as *she* is
- *he* is as similar to plural *they* as *she* is
- but: generic they and plural they are not as similar as he and she are
 → the two types of they are clearly semantically distinct

Discussion

What does generic they mean?

- its meaning is between the semantics of *he/she* and plural *they*
- i.e. it has its own meaning

Is it semantically more similar to *he*, *she*, or plural *they*?

- both *he* and *she* are equally similar to generic *they*
- generic they and plural they are clearly not identical semantically

Comprehension

Do the four pronouns show differences in how they are comprehended?

Schmitz, D. (2025). Pronoun comprehension from a discriminative perspective: A proof of concept. In D. Schmitz, S. D. Stein, & V. Schneider (Eds.), *Linguistic intersections of language and gender: Of gender bias and gender fairness* (pp. 95–110). düsseldorf university press. doi: 10.1515/9783111388694-006/html

The mental lexicon

• where we store all the words we know, along with their **meanings**, forms, and their

/kæt/, <cat>

meaning

a small, furry animal with a big personality

• usage

cat:kitten :: dog:puppy

• highly organised and constantly active when we listen, speak, read, write, sign

The discriminative lexicon

- a model of the mental lexicon which assumes mappings between meanings and forms which are based on the usage of words (Chuang & Baayen 2021)
- its computational implementation is called linear discriminative learning (Baayen et al. 2019)

Form matrix

- form is represented based on orthography via so-called trigraphs
- trigraphs are strings of 3 letters
- the start and end of a word are marked by a hashmark
- hashmarks are also counted

target form	#ca	cat	at#	сар	ap#	#ba	bat
cat	1	1	1	0	0	0	0
сар	1	0	0	1	1	0	0
bat	0	0	1	0	0	1	1

Semantic matrix

- meaning is represented based on the vectors computed via distributional semantic methods, e.g. instance vectors
- in the present study, vectors have 300 dimensions

target form	D1	D2	D3	D4	D5	•••	D300
cat	0.075	0.018	0.114	0.028	0.095	•••	0.050
сар	0.014	0.009	0.023	0.082	0.004	•••	0.074
bat	0.114	0.104	0.115	0.077	0.105		0.111

The discriminative lexicon

- a model of the mental lexicon which assumes mappings between meanings and forms which are based on the usage of words (Chuang & Baayen 2021)
- its computational implementation is called linear discriminative learning (Baayen et al. 2019)

Transformation matrix F

- with the form matrix *C* and semantic matrix *S* available, we can compute a transformation matrix *F*
- this transformation matrix F is used to map the form matrix C onto the semantic matrix S = to simulate the comprehension process
- what does that mean?
 - for a simple multiplication like 2 * x = 6, we can find the value of x
 - for a matrix multiplication like C * F = S, we also first need to find F
- matrix multiplication comes with a crucial characteristic
 - C * F = S will never result in S, but in an approximated version \hat{S}
 - this approximated version reflects the outcome of the comprehension process

Comprehended semantic matrix \hat{S}

• with the comprehended semantics, one can compute different measures

1. degree of semantic co-activation

reflects how strongly semantic dimensions are co-activated when a given word is retrieved from the lexicon

2. degree of comprehension uncertainty

reflects how well the original and approximated semantics of a word align; a better alignment indicates better comprehension

3. semantic neighbourhood density

reflects how many words are comprehended to have a very similar meaning

Results

	he	she	generic they	plural they	
Degree of semantic co-activation	0.09	0.09	0.17	0.22	0.20 0.16 0.12 he she generic plural

Results

	he	she	generic they	plural they	
Degree of semantic co-activation	0.09	0.09	0.17	0.22	0.20 0.16 0.12 he she generic plural
Degree of comprehension uncertainty	0.11	0.12	0.14	0.17	0.16 0.14 0.12 he she generic plural

Results

	he	she	generic they	plural they	
Degree of semantic co-activation	0.09	0.09	0.17	0.22	0.20 0.16 0.12 he she generic plural
Degree of comprehension uncertainty	0.11	0.12	0.14	0.17	0.16 0.14 0.12 he she generic plural
Semantic neighbourhood density	0.64	0.62	0.53	0.71	0.70 0.65 0.60 0.55 he she generic plural

Discussion

Do the four pronouns show differences in how they are comprehended?

- the comprehension of generic *they* is different than that of *he*, *she*, plural *they*
- degree of semantic co-activation & comprehension uncertainty

generic *they* is found between *he* and *she* at the lower and plural *they* at the higher end

semantic neighbourhood density

generic they shows a less dense neighbourhood than he, she, and plural they

Processing

Do differences in the comprehension of *they*, *he*, and *she* show an effect in processing?

Schmitz, D. (in prep). New insights into the processing of generic definite and specific ungendered singular they.

Background

Foertsch & Gernsbacher (1997)

- two self-paced reading studies
- 1. generic they

A truck driver should never drive when sleepy, even if **he/she/they** may be struggling to make a delivery on time, because many accidents are caused by drivers who fall asleep at the wheel.

2. specific they

That truck driver shouldn't drive when sleepy, even if **he/she/they** may be trying to make a delivery on time, because many accidents are caused by drivers who fall asleep at the wheel.

• the antecedent was either a "masculine", "feminine", or "neutral" common noun

Background

Foertsch & Gernsbacher (1997)

- issues
 - common nouns were not tested for STEREOTYPICALITY
 - potential confounds were not taken into account
 - AGE OF PARTICIPANT
 - GENDER OF PARTICIPANT
 - ITEM
 - TRIAL
- additional point: almost 30 years of language use have passed since their data was elicited

Items

• 20 items: 10 stereotypically female, 10 stereotypically male (cf. Misersky et al. 2014)

male	female		
drummer	babysitter		
electrician	caregiver		
farmer	cheerleader		
firefighter	florist		
groundskeeper	housekeeper		
guard	manicurist		
hunter	nanny		
magician	nurse		
mechanic	receptionist		
pilot	secretary		

Sentences

- each item was embedded in 6 sentences
 - 1. generic with he
 - 2. generic with she
 - 3. generic with *they*
 - 4. specific with he
 - 5. specific with she
 - 6. specific with they
- example

A/The drummer has to keep a steady rhythm, even if **he/she/they** may be nervous, because timing is crucial in music.

Groups

- materials were split into 4 groups to
 - keep the number of trials per participant reasonable
 - ensure that participants did not encounter the same target with multiple pronouns
- number of trials per participant: 30
- the order of trials was randomised within participant

Procedure

- blank screen at the start of each trial for 1 second
- individual screens for each of the three phrases per trial
- time-out after 4 seconds
- self-paced: spacebar to continue between phrases

Procedure

Procedure

The drummer has to keep a steady rhythm,

Procedure

even if she may be nervous,

Procedure

Procedure

- to ensure that participants actually read and parsed all sentences, each trial was followed by a simple question: "True or False?"
- participants were told that this was about their opinion, i.e. that there were no wrong answers

Participants

- 80 participants recruited via Prolific, i.e. 20 per group
- L1: British English
- age: mean 42.7, sd 14.2, min 18, max 84
- no gender information, instead: preferred pronoun
 - *he/him*: 50
 - *she/her*: 30

Data pre-processing

• RTs \geq 4000 ms and RTs \leq 400 ms were excluded (cf. Kutas and Federmeier 2010, Hohlfeld et al. 2015,

Evans and Curtis-Holmes 2005), if they were present for the

- second phrase, i.e. the one with the pronoun
- first phrase, i.e. the one with the common noun antecedent
- remaining RTs were log-transformed for a more normal distribution

Statistical analysis

- linear mixed-effects regression models for both types of they (generic, specific)
- both initial full models included the same variable setup
- then, stepwise reduction to find the best model

Generic they

- effects found for
 - interaction of **PRONOUN** and STEREOtypicality
 - AGE
 - NCHAR

Specific they

- effects found for
 - STEREO
 - AGE
 - TRIAL
 - NCHAR
- but not for PRONOUN!

Generic they – Results

pronoun * stereo

A drummer has to keep a steady rhythm...

Discussion

Do differences in the comprehension of *they*, *he*, and *she* show an effect in processing?

- 1. generic they
 - male antecedent: *he < they = she*
 - female antecedent: *she* = *they* = *he*
 - additionally, AGE and NCHAR show effects

Answer YES

2. specific they

- male antecedent: *he* = *she* = *they*
- female antecedent: *he* = *she* = *they*
- additionally, AGE, NCHAR, TRIAL, and STEREO show effects

Answer NO

Concluding remarks

Concluding remarks

Today's main findings

- 1. singular they is semantically different to he, she, and plural they
- 2. singular *they* is represented differently in the lexicon, i.e. it is comprehended differently than *he*, *she*, and plural *they*
- 3. different types of singular *they* are processed differently
 - a) generic *they* is processed differently than *he* and *she*
 - b) specific *they* is processed similarly to *he* and *she*

Outlook

- future research should
 - apply similar methodological approaches (distributional semantics, discriminative learning) to different types of singular *they* without conflating them into one category
 - apply other variants of self-paced reading and other methods (from psycholinguistics, neurolinguistics, etc.)
 - consider adding specific definite gendered singular *they*, as this is the most heatedly debated type of singular *they*
 - consider adding neopronouns to the picture, even though this will ultimately require more effort in creating study materials and may be complicated by data availability issues

References 1/2

- Baayen, R. H., Chuang, Y.-Y., Shafaei-Bajestan, E., & Blevins, J. P. (2019). The discriminative lexicon: A unified computational model for the lexicon and lexical processing in comprehension and production grounded not in (de)composition but in linear discriminative learning. *Complexity*, 2019, 4895891. <u>https://doi.org/10.1155/2019/4895891</u>
- **Baron**, D. E. (2021). *What's your pronoun?: Beyond he & she* (First published as a Liveright paperback). Liveright Publishing Corporation, a division of W.W. Norton & Company.
- Chuang, Y.-Y., & Baayen, R. H. (2021). Discriminative learning and the lexicon: NDL and LDL. Oxford Research Encyclopedia of Linguistics. https://doi.org/10.1093/ACREFORE/9780199384655.013.375
- **Conrod**, K. (2020). Pronouns and gender in language. In *The Oxford Handbook of Language and Sexuality*. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780190212926.013.63
- Davies, M. (2008). The Corpus of Contemporary American English (COCA). https://www.english-corpora.org/coca/
- **Evans**, J. St. B. T., & **Curtis-Holmes**, J. (2005). Rapid responding increases belief bias: Evidence for the dual-process theory of reasoning. *Thinking & Reasoning*, *11*(4), 382–389. <u>https://doi.org/10.1080/13546780542000005</u>
- Firth, J.R. (1957). A synopsis of linguistic theory 1930-1955. Studies in Linguistic Analysis: 1–32. London: Longman.
- Foertsch, J., & Gernsbacher, M. A. (1997). In Search of Gender Neutrality: Is Singular They a Cognitively Efficient Substitute for Generic He? *Psychological Science*, 8(2), 106–111. <u>https://doi.org/10.1111/j.1467-9280.1997.tb00691.x</u>
- Han, C. H., & Moulton, K. (2022). Processing bound-variable singular they. *Canadian Journal of Linguistics/Revue Canadianne de Linguistique*, 67(3), 267–301. <u>https://doi.org/10.1017/CNJ.2022.30</u>

References 2/2

- Hohlfeld, A., Martín-Loeches, M., & Sommer, W. (2015). Is Semantic Processing During Sentence Reading Autonomous or Controlled? Evidence from the N400 Component in a Dual Task Paradigm. *Advances in Cognitive Psychology*, 11(2), 42. <u>https://doi.org/10.5709/ACP-0170-2</u>
- Konnelly, L., Cowper, E. (2020). Gender diversity and morphosyntax: An account of singular they. *Glossa: A Journal of General Linguistics*, 5(1). <u>https://doi.org/10.5334/GJGL.1000</u>
- Kutas, M., & Federmeier, K. D. (2010). Thirty Years and Counting: Finding Meaning in the N400 Component of the Event-Related Brain Potential (ERP). *Https://Doi.Org/10.1146/Annurev.Psych.093008.131123*, 62, 621–647. <u>https://doi.org/10.1146/ANNUREV.PSYCH.093008.131123</u>
- Misersky, J., Gygax, P. M., Canal, P., Gabriel, U., Garnham, A., Braun, F., Chiarini, T., Englund, K., Hanulikova, A., Öttl, A., Valdrova, J., Von Stockhausen, L., & Sczesny, S. (2014). Norms on the gender perception of role nouns in Czech, English, French, German, Italian, Norwegian, and Slovak. *Behavior Research Methods*, 46(3), 841–871. <u>https://doi.org/10.3758/S13428-013-0409-Z</u>
- **Rescorla**, R. A., & **Wagner**, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), *Classical conditioning II: Current research and theory* (pp. 64–99). Appleton-Century-Crofts.
- Saguy, A. C., & Williams, J. A. (2022). A Little Word That Means A Lot: A Reassessment of Singular They in a New Era of Gender Politics. *Gender & Society*, 36(1), 5–31. <u>https://doi.org/10.1177/08912432211057921</u>
- Schmitz, D. (2025). Pronoun comprehension from a discriminative perspective: A proof of concept. In D. Schmitz, S. D. Stein, & V. Schneider (Eds.), *Linguistic intersections of language and gender: Of gender bias and gender fairness* (pp. 95–110). düsseldorf university press. <u>https://doi.org/10.1515/9783111388694-006</u>
- Wagner, A. R., & Rescorla, R. A. (1972). Inhibition in Pavlovian conditioning: Application of a theory. In R. A. Boakes & M. S. Halliday (Eds.), *Inhibition and learning* (pp. 301–334). Academic Press Inc.

Thank you!

ha

3

MM

Statistical analysis

- linear mixed-effects regression models for both types of they (generic, specific)
- both initial full models included the same variable setup

```
rt log ~
pronoun * pro +
                      # pronoun in sentence * preferred pronoun
                      # pronoun in sentence * stereotypicality
pronoun * stereo +
pronoun * age +
                      # pronoun in sentence * age of participant
                      # preferred pronoun * stereotypicality
pro * stereo +
 trial +
 nchar +
                      # number of characters in the phrase
 (1 | id) +
 (1 | item) +
 (1 \mid \text{group})
```

Generic they – Best model

rt_log ~

pronoun * stereo +

age +

nchar +

(1 | id) +

(1 | group)

Effects found for

- interaction of PRONOUN and STEREOtypicality
- AGE
- NCHAR

A drummer has to keep a steady rhythm...

Generic they – Results

age

A drummer has to keep a steady rhythm...

A drummer has to keep a steady rhythm... 11/07/2025

Generic they – Results

age

nchar

Specific they – Best model

rt_log ~ stereo + age + trial + nchar + (1 | id)

Effects found for

- STEREO
- AGE
- TRIAL
- NCHAR
- but not for **PRONOUN!**

The drummer has to keep a steady rhythm...

Specific *they* – Results

stereo

The drummer has to keep a steady rhythm...

The drummer has to keep a steady rhythm...

Specific they – Results

stereo

age

Specific *they* – Results

trial

The drummer has to keep a steady rhythm...

The drummer has to keep a steady rhythm...

11/07/2025

Specific *they* – Results

nchar

