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Background & Motivation

= traditionally, generic masculines in German are assumed to be gender-neutral [cf. 1] " jssue 1:the semantic vectors of the MASCULINE
= however, psycholinguistic research has shown that generic masculines are comprehended as biased and GENERIC were strongly correlated

towards male referents [e.g. 2, 3] " jssue 2: genericity, i.e. GENERIC VS. SPECIFIC, was
= recently, computational methods resulted in findings in line with psycholinguistic studies [4, 5] treated as an inflectional feature, which it is not
= however, the computational implementations come with two major issues = aim: solve these computationalissues

Methods & Analysis

Instance Vectors

I t t = the mean vector of n content word vectors preceding & following a
n S a n c e ve c O rs target word token (61 with attestations and contexts taken from [4, 5]

= computedwithn = 2,n =5, andn = 8 to check for influence of

as awindow to

= computed based on semantic vectors generated by fastText [7]

o
( n O n -)ge n e rl c rO le = cosine similarity as measure of semantic similarity between vectors

of target words

noun semantics

"= Dpetaregressionin generalised additive mixed models predicting
cosine similarity [s]

= predictor of interest is the COMPARISON that belongs to a given cosine

similarity value (other variables: number, frequency, stereotypicality)
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= findings in line with previous psycholinguistic [2, 3] =
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