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Gender meets language

• two word classes are most prominently associated with gender
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PRONOUNS

e.g. they vs. he/she in English

(ROLE) NOUNS

e.g. Lehrer vs. Lehrer*in in German



Background: role nouns

• in German, role nouns such as Lehrer ‘teacher’ can be used as generic forms

• generic masculines are

• orthographically and phonologically identical to explicit masculines

• used to describe individuals of all genders in singular and plural contexts

• traditionally assumed to “abstract away” notions of gender, 

i.e. to be gender-neutral (cf. Doleschal 2002)
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word referent gender(s) grammatical gender number

Lehrer male masculine

singularLehrer male or female masculine

Lehrerin female feminine

Lehrer male masculine

pluralLehrer male and/or female masculine

Lehrerinnen female feminine



Background: role nouns

• however, previous research has cast doubt on the gender-neutral use of 

generic masculines

• most (if not all) behavioural studies on the subject find one overall result

→ generic masculines are not gender-neutral but show a clear bias towards the 

explicit masculine reading (e.g. Schunack & Binanzer 2022; Gygax et al. 2008; Irmen & Kurovskaja 

2010; Irmen & Linner 2005; Koch 2021; Misersky et al. 2019; Stahlberg & Sczesny, 2001)
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Background: pronouns

• in recent years, the use of appropriate third-person pronouns has gained 

increased attention

• in contemporary English, one can differentiate at least four types of 

singular they (Conrod, 2020)

• generic indefinite

Someone ran out of the classroom, but they forgot their backpack.

• generic definite

The ideal student completes the homework, but not if they have an emergency.

• specific definite ungendered

The math teacher is talented, but they hand back grades late.

• specific definite gendered

James is great at laundry, but they never wash their dishes.
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Methods in gender linguistics

• a great variety of methods has already been used to investigate gender

• estimated proportions of women/men after reading texts (Braun et al., 1998)

• text and sentence continuations (Heise, 2000)

• questionnaires (Stahlberg et al., 2001)

• sentence evaluation paradigm (Rothmund & Scheele, 2004)

• eye-tracking (Esaulova et al., 2015)

• event-related potentials (ERPs; Misersky et al., 2019)

• word-picture matching tasks (Zacharski & Ferstl, 2023)

• sociolinguistic interviews (Steriopolo & Aussoleil, 2023)

• morphosyntactic analyses (Conrod, 2022)

• …and much more!
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Today’s aim
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Today’s aim

• while many methods have already been used, some were long untouched 

by gender linguistic research, for example

• computational methods

• and while many questions have already been asked, some areas are still 

understudied, for example

• the semantics of role nouns and pronouns
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What can a computational model based on psychological 

theory tell us about the semantics of role nouns and pronouns?



German role nouns
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Linear Discriminative Learning

• we simulate a mental lexicon by implementing a linear discriminative 

learning network (e.g. Baayen et al. 2019)

• using this mental lexicon, we can extract semantic measures for its entries
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Corpus: Targets

• 113 target word paradigms were adapted from a study on the influence of 

stereotypicality on the comprehension of generic masculines (Gabriel et al. 2008)

• all target word paradigms 

• consist of role nouns

• have common explicit feminine forms
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generic & explicit
masculines

feminine explicit translation

Anwalt Anwältin ‘lawyer’

Bäcker Bäckerin ‘baker’

Historiker Historikerin ‘historian’

Maurer Maurerin ‘mason’

Professor Professorin ‘professor’

Wärter Wärterin ‘guard’



Corpus: Sentences

• 10 million sentences were extracted from the Leipzig Corpora Collection’s 

subcorpus “News” (Goldhahn et al. 2012) → 1 million for each year from 2010 to 
2019

• from the 10 million sentences, the following was sampled

• 800,000 sentences without any target words

• 30,000 sentences with target words

• 49,044,960 words overall

• overall frequency of target word paradigms in our corpus is relative to 
their overall frequency in the 10 million sentences, e.g.

• target word paradigm with 20,000+ occurrences = 600 samples

• target word paradigm with fewer than 200 occurrences = 100 samples

20/12/2023 12



Corpus: Annotation

• the 30,000 sentences containing target words were manually annotated by 

two authors and two assistants, all of which were native speakers of 

German

• for each target word occurrence, it was annotated whether the form was

• masculine or feminine; singular or plural; explicit or generic

• the 800,000 sentences without and the 30,000 sentences with target 

words were then automatically analysed and annotated using the 

RNNTagger software (Schmid, 1999) 

• tagged information consisted of words’ base forms and information on 

inflectional grammar

20/12/2023 13



Linear Discriminative Learning

• we simulate a mental lexicon by implementing a linear discriminative 

learning network (e.g. Baayen et al. 2019)

• using this mental lexicon, we can extract semantic measures for its entries
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Semantic vectors

• semantic vectors were computed based on the corpus for words and 

inflectional functions with Naive Discriminative Learning (NDL; e.g. Baayen & 

Ramscar, 2015)

• NDL follows the Rescorla-Wagner rules (Rescorla & Wagner, 1972)

• outcomes (word forms) are predicted by cues (words/inflection)

• the associative strength between an outcome and a cue is represented by a 

single number

• we used each sentence to predict each individual word within the sentence 

by the other words in that sentence
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Naive Discriminative Learning 

toy example: different fruits
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Naive Discriminative Learning 

toy example: different fruits
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Naive Discriminative Learning 

toy example: different fruits
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red yellow orange purple blue sweet sour round long

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1 1



Naive Discriminative Learning 

toy example: different fruits
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red yellow orange purple blue sweet sour round long

30 1 -1 -3 -2 30 1 30 -1

-10 15 -10 -8 -6 15 -11 -5 15

-6 -7 18 -14 -15 3 18 18 -2

-5 -1 -6 10 -9 10 5 10 -7

-6 -9 -19 2 5 5 1 5 -5

45 -6 -9 -14 -1 45 20 45 45

-1 20 -5 -6 -8 -4 20 20 20
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Naive Discriminative Learning 
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Naive Discriminative Learning 

toy example: different fruits
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Naive Discriminative Learning 

toy example: different fruits
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red yellow orange purple blue sweet sour

apple 29 1 -1 -3 -2 29 1

banana -10 15 -10 -8 -6 15 -11

orange -6 -7 18 -14 -15 3 15

grape -5 -1 -6 10 -9 5 5

blueberry -6 -9 -19 2 3 4 1

strawberry 45 -6 -9 -14 -1 25 20

lemon -1 20 -5 -6 -8 -4 20



Naive Discriminative Learning 

• for content words, their semantic vector is the sum of the vectors of their 

parts, e.g. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎

• thus, e.g., the semantics of the target word paradigm Lehrer ‘teacher’ 

consists of
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target base number gender genericity

Lehrer 𝐿𝐿𝑎𝑎𝐿𝑝𝑝𝑎𝑎𝑝𝑝 + singular + masculine + generic

Lehrer 𝐿𝐿𝑎𝑎𝐿𝑝𝑝𝑎𝑎𝑝𝑝 + singular + masculine + explicit

Lehrerin 𝐿𝐿𝑎𝑎𝐿𝑝𝑝𝑎𝑎𝑝𝑝 + singular + feminine + explicit

Lehrer 𝐿𝐿𝑎𝑎𝐿𝑝𝑝𝑎𝑎𝑝𝑝 + plural + masculine + generic

Lehrer 𝐿𝐿𝑎𝑎𝐿𝑝𝑝𝑎𝑎𝑝𝑝 + plural + masculine + explicit

Lehrerinnen 𝐿𝐿𝑎𝑎𝐿𝑝𝑝𝑎𝑎𝑝𝑝 + plural + feminine + explicit



Linear Discriminative Learning

• we simulate a mental lexicon by implementing a linear discriminative 

learning network (e.g. Baayen et al. 2019)

• using this mental lexicon, we can extract semantic measures for its entries
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Forms

• triphones as unit for a word’s form

• trigrams / triphones have been shown to capture the form variability of 

words well (e.g. Chuang et al., 2020; Schmitz et al., 2021; Schmitz et al., 2023)
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form #le ler erA rA# ArI rIn In#

Lehrer 1 1 1 1 0 0 0

Lehrer 1 1 1 1 0 0 0

Lehrerin 1 1 1 0 1 1 1



Linear Discriminative Learning

• we simulate a mental lexicon by implementing a linear discriminative 

learning network (e.g. Baayen et al. 2019)

• using this mental lexicon, we can extract semantic measures for its entries
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Learning comprehension

• Comprehension is learnt by linearly mapping the matrix of forms onto the 

matrix of semantic vectors
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Learning comprehension

• Comprehension is learnt by linearly mapping the matrix of forms onto the 

matrix of semantic vectors
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Learning comprehension

• Comprehension is learnt by linearly mapping the matrix of forms onto the 

matrix of semantic vectors
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Measures

• COMPREHENSION QUALITY

correlation of a target’s original and estimated vectors

higher correlation = higher comprehension quality

• NEIGHBOURHOOD DENSITY

correlation of a target with its 8 nearest neighbours

higher density = denser neighbourhood 

• ACTIVATION DIVERSITY

Euclidian norm of a target’s vector

higher norm = higher degree of co-activation

• STEREOTYPICALITY

adopted from Gabriel et al. (2008)
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Multinomial Logistic Regression Analysis

• dependent variable: TYPE

singular generic masculine; singular explicit masculine; singular explicit feminine

plural generic masculine; plural explicit masculine; plural explicit feminine

• explanatory variables

• ACTIVATION DIVERSITY

• PRINCIPAL COMPONENT (COMPREHENSION QUALITY + NEIGHBOURHOOD DENSITY)

• STEREOTYPICALITY JUDGEMENTS (Gabriel et al. 2008)
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Results

ACTIVATION DIVERSITY
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Results

COMPREHENSION QUALITY + NEIGHBOURHOOD DENSITY
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Results

STEREOTYPICALITY JUDGEMENTS
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Discussion

• findings are in line with assumptions found in previous research

• Stahlberg et al. (2001)

masculine gender of [masculine] generics has a semantic component 

of “maleness”

• Irmen & Linner (2005)

semantic similarity of generic and explicit masculines due to their resonance 

with the lexicon and each other

• Gygax et al. (2012) and Gygax et al. (2021)

generic masculines activate the underlying representations of explicit 

masculines, leading to a semantic activation of explicit masculines, thus a male 

bias
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Discussion

• the masculine bias found in generic masculines is due to their underlying semantic 

features which they share with explicit masculines

• the language itself is the reason for the masculine bias, not any non-linguistic 

influences

• findings confirm the bias found in previous behavioural studies (e.g. Schunack & Binanzer 

2022; Gygax et al. 2008; Irmen & Kurovskaja 2010; Irmen & Linner 2005; Koch 2021; Misersky et al. 2019; Stahlberg & 

Sczesny, 2001)

• future research will show

• whether the LDL measures computed for our data are predictive of behavioural 

measures

• how (new & allegedly) more neutral forms, e.g. Lehrer*innen, LehrerInnen, perform
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English pronouns
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Linear Discriminative Learning

• we simulate a mental lexicon by implementing a linear discriminative 

learning network (e.g. Baayen et al. 2019)

• using this mental lexicon, we can extract semantic measures for its entries
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Corpus

• small corpus based on COCA (Davies, 2008-)

• 17,805 word form tokens

• 1,000 sentences

• 60 + attestations of each target pronoun

he, she, and plural and singular they

• pronoun attestations were manually checked for number and genericity

• automatically analysed and annotated for inflection using the RNNTagger

software (Schmid, 1999)
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Linear Discriminative Learning

• we simulate a mental lexicon by implementing a linear discriminative 

learning network (e.g. Baayen et al. 2019)

• using this mental lexicon, we can extract semantic measures for its entries
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Semantic vectors

• semantic vectors were computed based on the corpus for words and 

inflectional functions with Naive Discriminative Learning (NDL; e.g. Baayen & 

Ramscar, 2015)

• NDL follows the Rescorla-Wagner rules (Rescorla & Wagner, 1972)

• outcomes (word forms) are predicted by cues (words/inflection)

• the associative strength between an outcome and a cue is represented by a 

single number

• we used each sentence to predict each individual word within the sentence 

by the other words in that sentence
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…



Semantic vectors

• however: 1 vector per base/function word/inflectional function

= 1 vector per pronoun

• potentially very different semantics of pronoun attestations are conflated 

into one vector representation

• this is an issue! 

→ pronouns are assumed to inherit the semantics of their referents
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Instance vectors

• the solution: instance vectors (Lapesa et al., 2018)

• take 𝑛𝑛 preceding and following words

• get the semantic vectors of these words

• compute the mean of these vectors

= instance vector
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Instance vectors

• the solution: instance vectors (Lapesa et al., 2018)

• take 𝑛𝑛 preceding and following words

• get the semantic vectors of these words

• compute the mean of these vectors

= instance vector
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theySG

𝑛𝑛 = 2

mean → instance vector



Instance vectors

• the solution: instance vectors (Lapesa et al., 2018)

• take 𝑛𝑛 preceding and following words

• get the semantic vectors of these words

• compute the mean of these vectors

= instance vector
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Instance vectors

• the solution: instance vectors (Lapesa et al., 2018)

• take 𝑛𝑛 preceding and following words

• get the semantic vectors of these words

• compute the mean of these vectors

= instance vector

20/12/2023 49

theySG

𝑛𝑛 = 8

mean → instance vector



Instance vectors

• for the present study

• 𝑛𝑛=5

• preceding and following units: vectors for bases/function words/inflectional 

functions

• preceding and following semantic vectors: via NDL
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theySG

𝑛𝑛 = 5

mean → instance vector



Linear Discriminative Learning

• we simulate a mental lexicon by implementing a linear discriminative 

learning network (e.g. Baayen et al. 2019)

• using this mental lexicon, we can extract semantic measures for its entries
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Forms

• trigrams as unit for a word’s form

• trigrams / triphones have been shown to capture the form variability of 

words well (e.g. Chuang et al., 2020; Schmitz et al., 2021; Schmitz et al., 2023)
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form #ca cat at# cap ap# #ba bat

cat 1 1 1 0 0 0 0

cap 1 0 0 1 1 0 0

bat 0 0 1 0 0 1 1



Linear Discriminative Learning

• we simulate a mental lexicon by implementing a linear discriminative 

learning network (e.g. Baayen et al. 2019)

• using this mental lexicon, we can extract semantic measures for its entries
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Learning comprehension

• Comprehension is learnt by linearly mapping the matrix of forms onto the 

matrix of semantic vectors – this done 60 times with different instance 

vectors for he, she, singular they, and plural they
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Learning comprehension

• Comprehension is learnt by linearly mapping the matrix of forms onto the 

matrix of semantic vectors – this done 60 times with different instance 

vectors for he, she, singular they, and plural they
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Learning comprehension

• Comprehension is learnt by linearly mapping the matrix of forms onto the 

matrix of semantic vectors – this done 60 times with different instance 

vectors for he, she, singular they, and plural they
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Results

DEGREE OF SEMANTIC CO-ACTIVATION

• higher = more co-activation
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theyPL

theySG
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he she theyPL
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theyPL *** ***

theySG *** *** **



Results

SEMANTIC UNCERTAINTY

• higher = more uncertain
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Results

SEMANTIC NEIGHBOURHOOD DENSITY

• higher = more close neighbours
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Discussion

• he and she co-activate to a lower degree than generic and plural they

• he and she are less strongly connected to other entries of the lexicon

= generic and plural they are more generic (?)

• he and she are semantically less certain than generic and plural they

• referents of he and she are more specific than those of generic and plural they, 

i.e. they is “more often correct”

• he and she have more close neighbours than generic and plural they

• he and she are more specific than plural they, while generic and plural they are 

more generic (?)
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Summary
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Summary

• computational methods provide novel insights into

• generic masculines and their male bias

• pronouns and their semantic similarities and differences

• computational methods are a fruitful addition to the field of gender 

linguistics

• however, such methods only recently entered the field (Schmitz, 2023a; Schmitz, 2023b; 

Schmitz et al., 2023)

• more computational research is definitely called for
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Summary

• a huge variety of different methodological 

approaches generally lead to complementary 

findings in gender linguistic research

• and, more generally, to new insights into the 

intersections of language and gender

• however: what is beyond the scope of linguistic 

research is what society makes of these findings
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Schmitz, D., Stein, S. & Schneider, V. 
(2025). Linguistic intersections of 
language and gender: Of gender bias and 
gender fairness. düsseldorf university 
press.

THANK YOU!
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