

Denominal and deverbal eventuality-related nominalizations from a discriminative perspective

Viktoria Schneider, Dominic Schmitz & Ingo Plag 16th International Cognitive Linguistics Conference 08/08/2023

• What are eventuality-related nominalizations?

• What are eventuality-related nominalizations?

(1) employee, trainee

 \rightarrow participant reading

- What are eventuality-related nominalizations?
 - (1) employee, trainee
 - \rightarrow participant reading
 - (2) Markham sets down the rules about park befoulment. (Plag et al. 2018: 474)
 - \rightarrow whole eventuality reading

- What are eventuality-related nominalizations?
 - (1) employee, trainee
 - \rightarrow participant reading

(2) Markham sets down the rules about park befoulment. (Plag et al. 2018: 474)

 \rightarrow whole eventuality reading

• Semantic representation provides eventualities and participants for word formation process (e.g., Plag et al. 2018, Kawaletz 2023, Schneider 2023)

- What are eventuality-related nominalizations?
 - (1) employee, trainee
 - \rightarrow participant reading

(2) Markham sets down the rules about park befoulment. (Plag et al. 2018: 474)

 \rightarrow whole eventuality reading

- Semantic representation provides eventualities and participants for word formation process (e.g., Plag et al. 2018, Kawaletz 2023, Schneider 2023)
- Research tends to focus on deverbal nominalizations (e.g., Barker 1998; Alexiadou 2010; Kawaletz & Plag 2015; Plag et al. 2018; Kawaletz 2023)

• However, many nominalizing suffixes also attach to non-verbal bases

(e.g., Plag 1999, 2004, Bauer et al. 2013, Schneider 2023)

• However, many nominalizing suffixes also attach to non-verbal bases

(e.g., Plag 1999, 2004, Bauer et al. 2013, Schneider 2023)

(3) covenant<u>ee</u>

(4) devilment

(5) ozonation

• However, many nominalizing suffixes also attach to non-verbal bases

(e.g., Plag 1999, 2004, Bauer et al. 2013, Schneider 2023)

(3) covenant<u>ee</u>

(4) devilment

(5) ozonation

• Thus far, unclear why and how non-deverbal eventuality-related nominalizations work

• However, many nominalizing suffixes also attach to non-verbal bases

(e.g., Plag 1999, 2004, Bauer et al. 2013, Schneider 2023)

(3) covenant<u>ee</u>

(4) devilment

(5) ozonation

- Thus far, unclear why and how non-deverbal eventuality-related nominalizations work
- Aim of this paper: explore potential semantic differences between deverbal and denominal eventuality-related nominalizations

Research questions

Research questions

RQ1

Do denominal and deverbal derivatives show the same degree of semantic similarity to their bases?

Research questions

RQ1

Do denominal and deverbal derivatives show the same degree of semantic similarity to their bases?

RQ2

Which factors influence the semantic similarity of derivatives and bases?

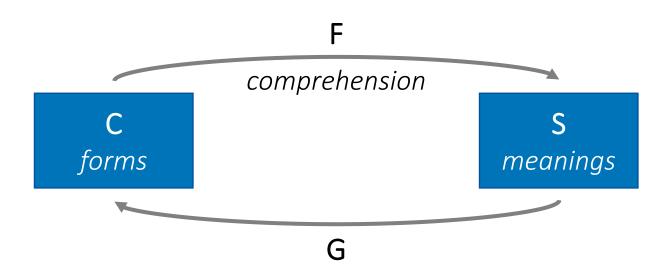
• Computational methods proved to be useful for semantic analyses, e.g., linear discriminative learning – LDL (e.g., Chuang et al. 2021, Schmitz et al. 2021,

Stein & Plag 2021, Schmitz et al. 2022, Schmitz et al. 2023)

- Computational methods proved to be useful for semantic analyses,
 e.g., linear discriminative learning LDL (e.g., Chuang et al. 2021, Schmitz et al. 2021,
 Stein & Plag 2021, Schmitz et al. 2022, Schmitz et al. 2023)
- In this usage-based approach, morphology resides in the semantic and phonological relationships between entries in the mental lexicon

- Computational methods proved to be useful for semantic analyses,
 e.g., linear discriminative learning LDL (e.g., Chuang et al. 2021, Schmitz et al. 2021,
 Stein & Plag 2021, Schmitz et al. 2022, Schmitz et al. 2023)
- In this usage-based approach, morphology resides in the semantic and phonological relationships between entries in the mental lexicon
- LDL simulates an individual's mental lexicon incl. all entries and target words (e.g., Baayen et al., 2019)

- Computational methods proved to be useful for semantic analyses,
 e.g., linear discriminative learning LDL (e.g., Chuang et al. 2021, Schmitz et al. 2021,
 Stein & Plag 2021, Schmitz et al. 2022, Schmitz et al. 2023)
- In this usage-based approach, morphology resides in the semantic and phonological relationships between entries in the mental lexicon
- LDL simulates an individual's mental lexicon incl. all entries and target words (e.g., Baayen et al., 2019)
- Measures extracted from the simulated lexicon express semantic and phonological relationships of the entries



- Form matrix C contains information on word forms
 - Here: trigrams

	#dr	dre	res	ess	ss#	#pe	реа	eac	ach	ch#
dress	1	1	1	1	1	0	0	0	0	0
peach	0	0	0	0	0	1	1	1	1	1

- Semantic matrix S contains word vectors
 - From naive discriminative learning

(NDL, Baayen & Ramscar 2015; vectors from Baayen et al. 2019)

	skirt	t-shirt	apple	banana
dress	0.45	0.26	0.03	0.008
peach	0.006	0.002	0.34	0.48

- Semantic matrix S contains word vectors
 - From naive discriminative learning

(NDL, Baayen & Ramscar 2015; vectors from Baayen et al. 2019)

	skirt	t-shirt	apple	banana		
dress	0.45	0.26	0.03	0.008	word vectors	
peach	0.006	0.002	0.34	0.48		

Do denominal and deverbal derivatives show the same degree of semantic similarity to their bases?

• The similarity of bases and derivates is computed via their vectors

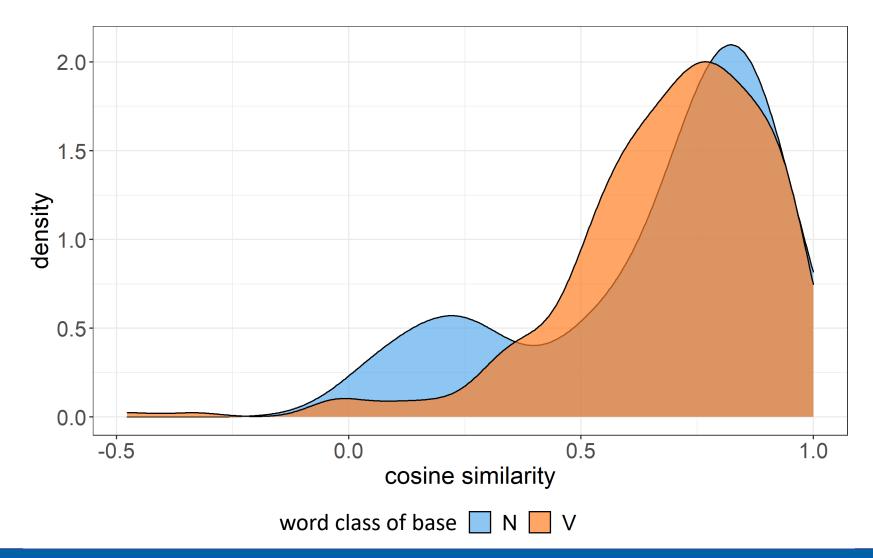
- The similarity of bases and derivates is computed via their vectors
- The measure of choice for this analysis is cosine similarity

- The similarity of bases and derivates is computed via their vectors
- The measure of choice for this analysis is cosine similarity
- Cosine similarity measures the similarity between two vectors by computing the angle between the two vectors

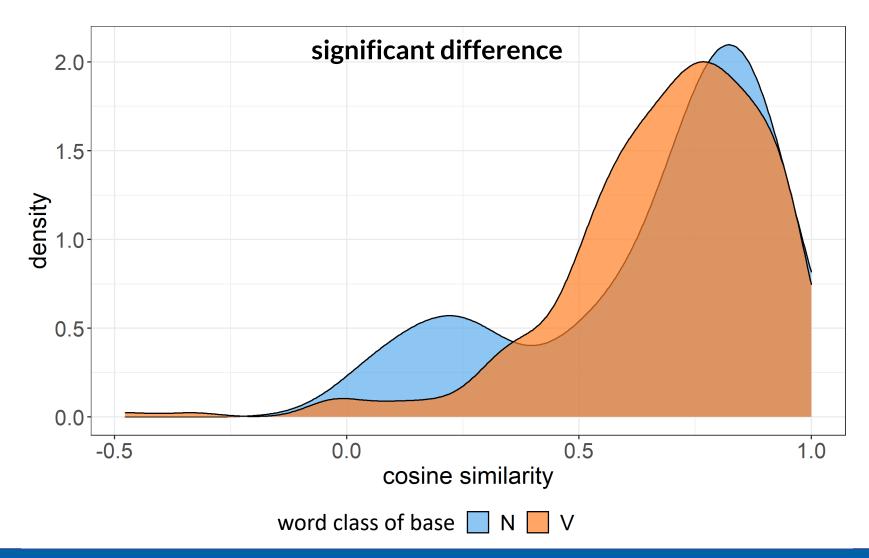
- The similarity of bases and derivates is computed via their vectors
- The measure of choice for this analysis is cosine similarity
- Cosine similarity measures the similarity between two vectors by computing the angle between the two vectors
- Higher cosine similarity values indicate a higher degree of similarity

Cosine similarities: -ee

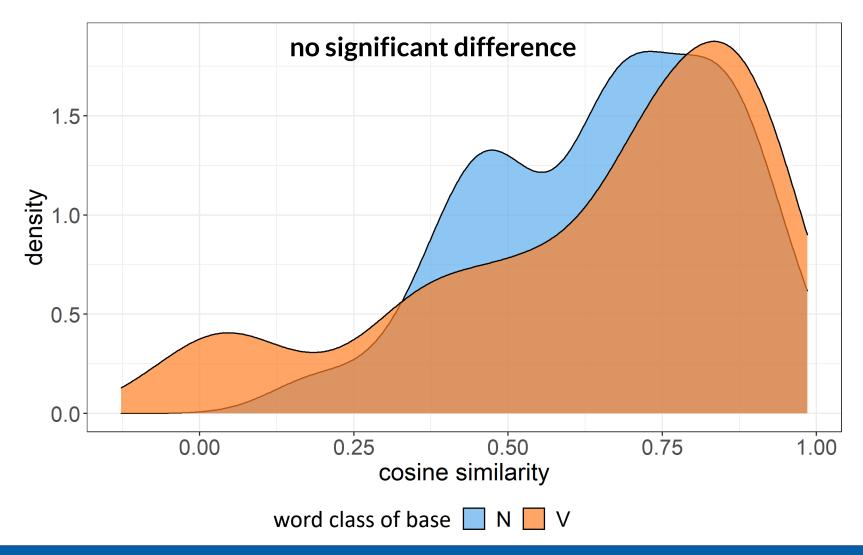
Cosine similarities: -ee



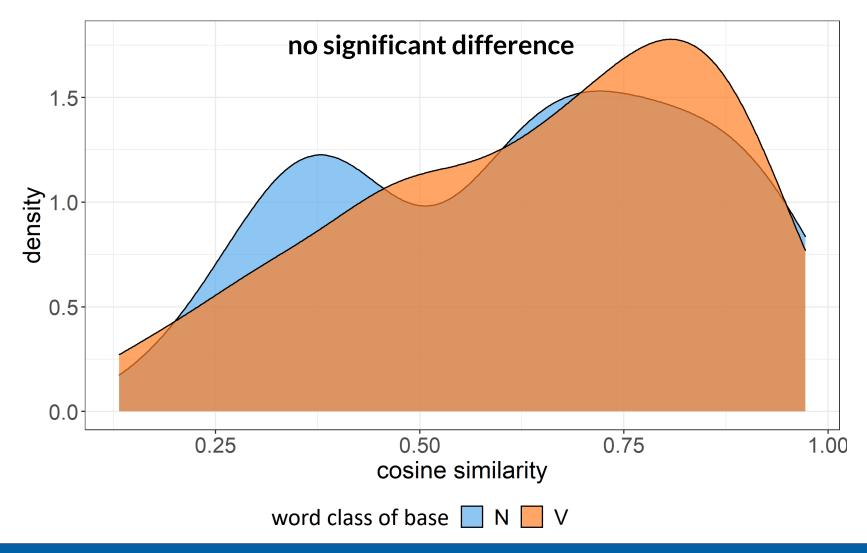
Cosine similarities: -ee



Cosine similarities: -ment



Cosine similarities: -ation



Which factors influence the semantic similarity of derivatives and bases?

Measures

- Traditional measures
 - base polysemy
 - relative frequency
 - word class of base

Measures

- Traditional measures
 - base polysemy
 - relative frequency
 - word class of base
- LDL measures
 - Semantic co-activation

higher = higher degree of co-activation in the lexicon

• Neighborhood density

denser = more other words have similar semantics

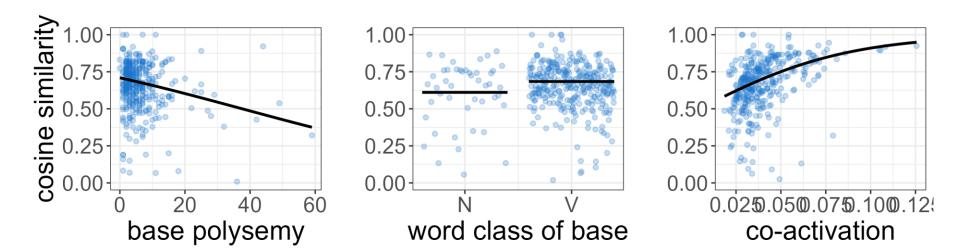
• Beta regression statistical tool as cosine similarity in range of (0,1)

- Beta regression statistical tool as cosine similarity in range of (0,1)
- Beta regression analyses performed for each suffix

- Beta regression statistical tool as cosine similarity in range of (0,1)
- Beta regression analyses performed for each suffix
- cosine similarity ~

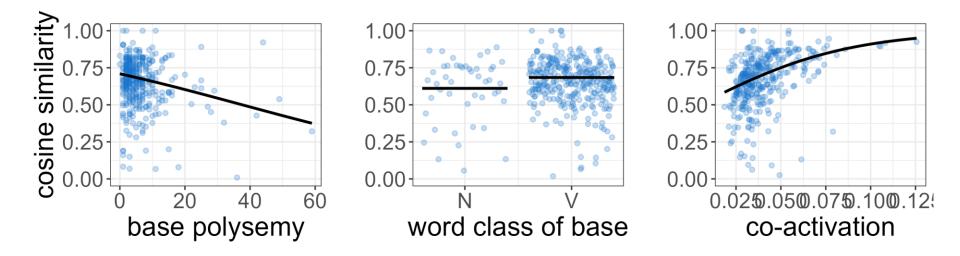
semantic co-activation + neighborhood density + base polysemy + relative frequency + word class of base

Beta regression results: -ee



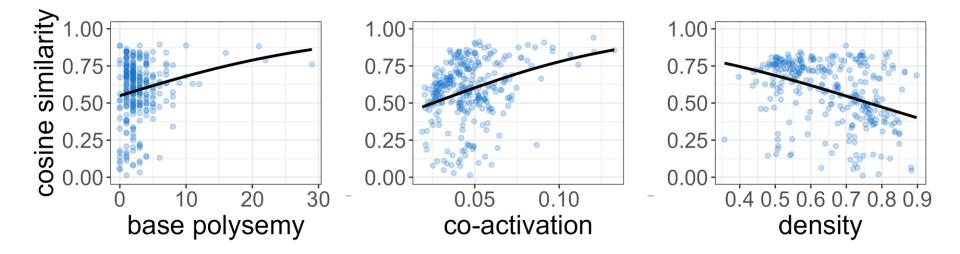
Beta regression results: -ee

- Significant effects
 - Base polysemy
 - Word class of base
 - Semantic co-activation



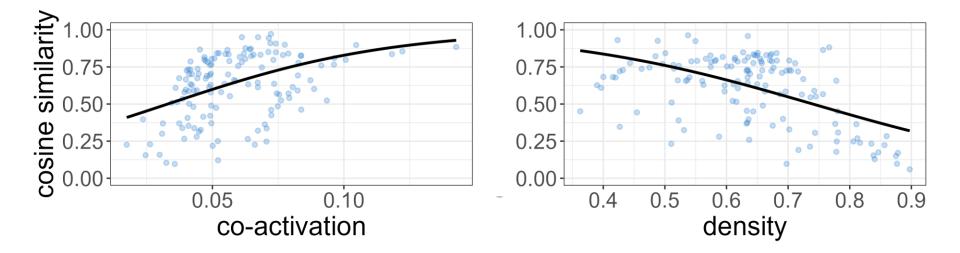
Beta regression results: -ment

- Significant effects
 - Base polysemy
 - Semantic co-activation
 - Neighborhood density



Beta regression results: -ation

- Significant effects
 - Semantic co-activation
 - Neighborhood density



RQ1

Do denominal and deverbal derivatives show the same degree of semantic similarity to their bases?

RQ1

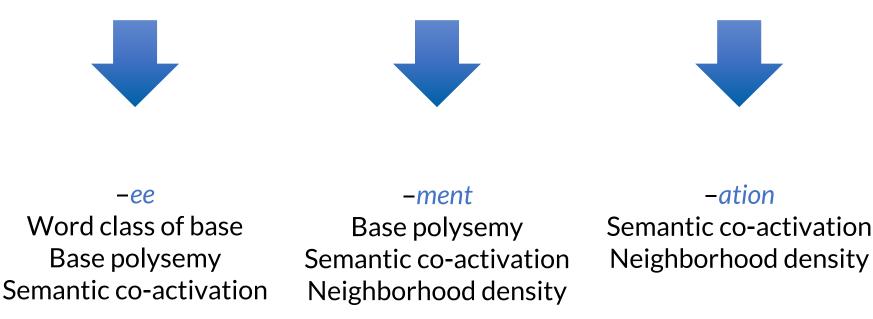
Do denominal and deverbal derivatives show the same degree of semantic similarity to their bases?

RQ2

Which factors influence the semantic similarity of derivatives and bases?

RQ2

Which factors influence the semantic similarity of derivatives and bases?



• Word class of base is **not** the most influential variable for semantic similarity of base and derivative

- Word class of base is **not** the most influential variable for semantic similarity of base and derivative
- LDL measures, i.e., measures derived from relationships between entries of the mental lexicon, apparently better predictors of base and derivative similarity than more traditional measures

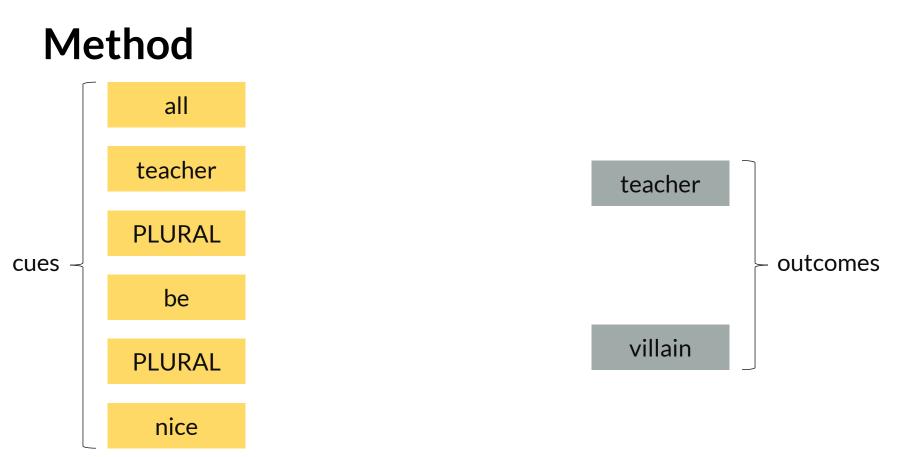
- Word class of base is **not** the most influential variable for semantic similarity of base and derivative
- LDL measures, i.e., measures derived from relationships between entries of the mental lexicon, apparently better predictors of base and derivative similarity than more traditional measures

THANK YOU!

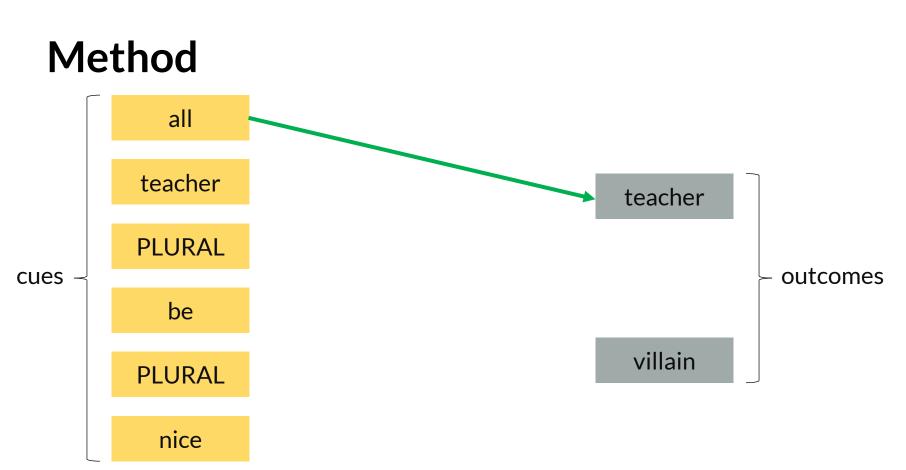
References

- Alexiadou, Artemis. 2010. Nominalizations: A probe into the architecture of grammar part i: The nominalization puzzle. Language and Linguistics Compass 4(7). 496-511.
- Barker, Chris. 1998. Episodic -ee in English: A thematic role constraint on new word formation. Language 74 (4), pp. 695-727.
- Bauer, Laurie, Rochelle Lieber & Ingo Plag. 2013. The Oxford reference guide to English morphology. Oxford: Oxford University Press.
- Kawaletz, Lea. 2023. The semantics of English -ment nominalizations. Empirically Oriented Theoretical Morphology and Syntax 12. Berlin: Language Science Press. doi: 10.5281/zenodo.7915801.
- Kawaletz, Lea & Ingo Plag. 2015. Predicting the semantics of English nominalizations: A frame-based analysis of -ment Suffixation. In: Semantics of complex words. Bauer, Laurie, Lívia Körtvélyessy, Pavol Štekauer (Eds.), pp. 289-319.
- Plag, Ingo. 1999. Morphological productivity: Structural constraints in English derivation. Berlin: Mouton de Gruyter.
- Plag, Ingo. 2004. Syntactic category information and the semantics of derivational morphological rules. Folia Linguistica 38(3-4). 193–225.
- Plag, Ingo, Marios Andreou & Lea Kawaletz. 2018. A frame-semantic approach to polysemy in affixation. In Olivier Bonami, Gilles Boyé, Georgette Dal, Hélène Giraudo & Fiammetta Namer (eds.), *The lexeme in descriptive and theoretical morphology*, 467–486. Berlin: Language Science Press.
- Schmitz, Dominic, Ingo Plag, Dinah Baer-Henney & Simon David Stein. 2021. Durational Differences of Word-Final /s/ Emerge From the Lexicon: Modelling Morpho-Phonetic Effects in Pseudowords With Linear Discriminative Learning. Frontiers in Psychology, 12, 2983.
- Schmitz, Dominic, Viktoria Schneider & Janina Esser. 2023. No genericity in sight: An exploration of the semantics of masculine generics in German. Glossa Psycholinguistics. Preprint available on PsyArXiv. doi: 10.31234/osf.io/c27r9.
- Schneider, Viktoria. 2023. Eventualities in the semantics of denominal nominalizations. In Sven Kotowski & Ingo Plag (eds.), The semantics of derivational morphology: Theory, methods, evidence, de Gruyter. In press.
- Stein, Simon David, & Ingo Plag. 2021. Morpho-phonetic effects in speech production: Modeling the acoustic duration of English derived words with linear discriminative learning. *Frontiers in Psychology* 12: 678712. doi: 10.3389/fpsyg.2021.678712.
- Stein, Simon David. 2023. The phonetics of derived words in English: Tracing morphology in speech production. Berlin, Boston: De Gruyter. doi: 10.1515/9783111025476.

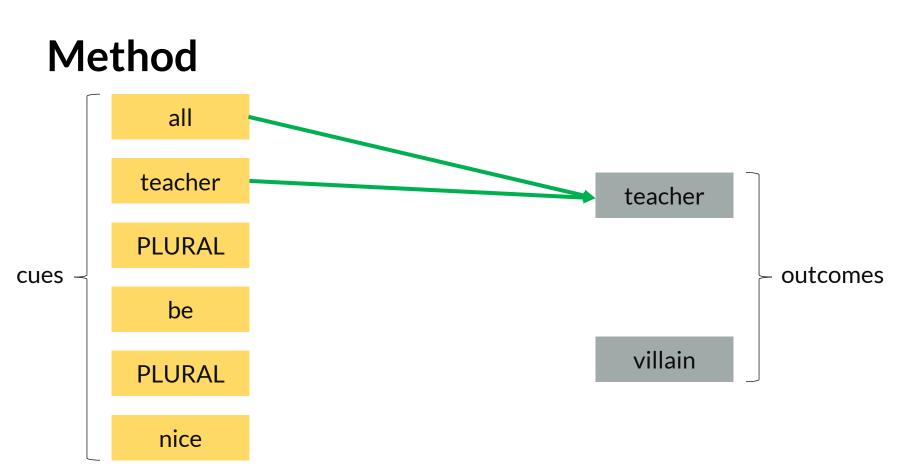
Thank you!



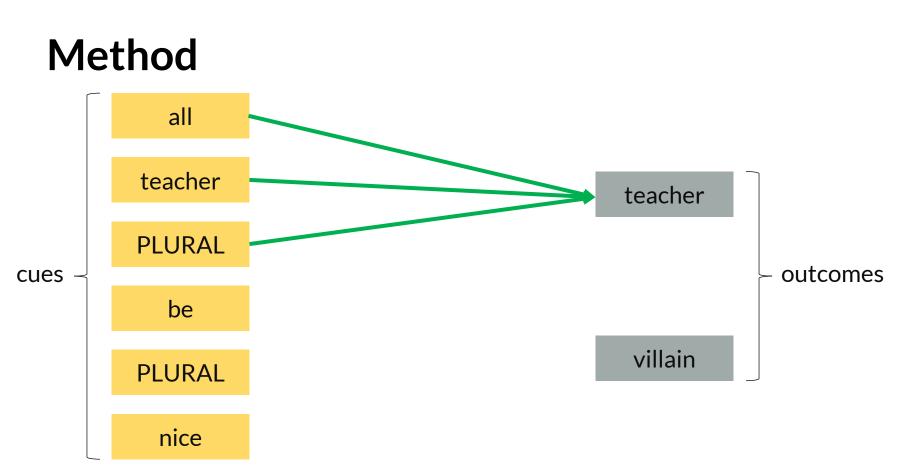
	all	teacher	PLURAL	be	nice	villain	evil
teacher							
villain							



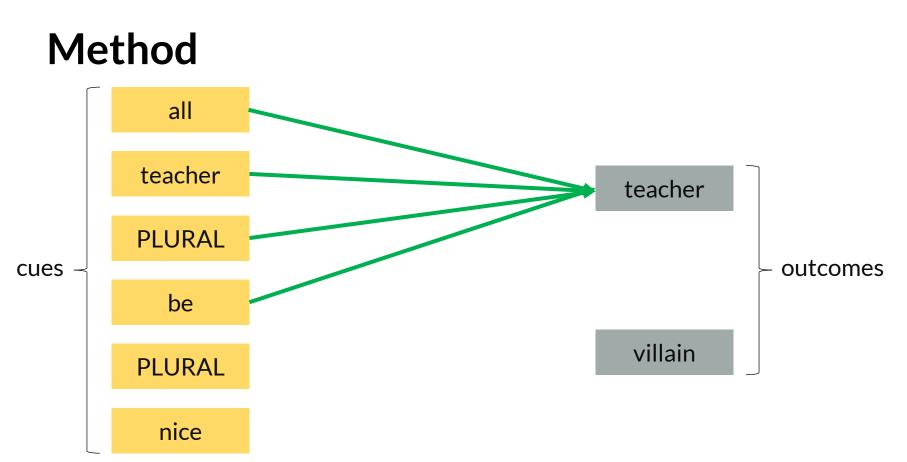
	all	teacher	PLURAL	be	nice	villain	evil
teacher	+						
villain							



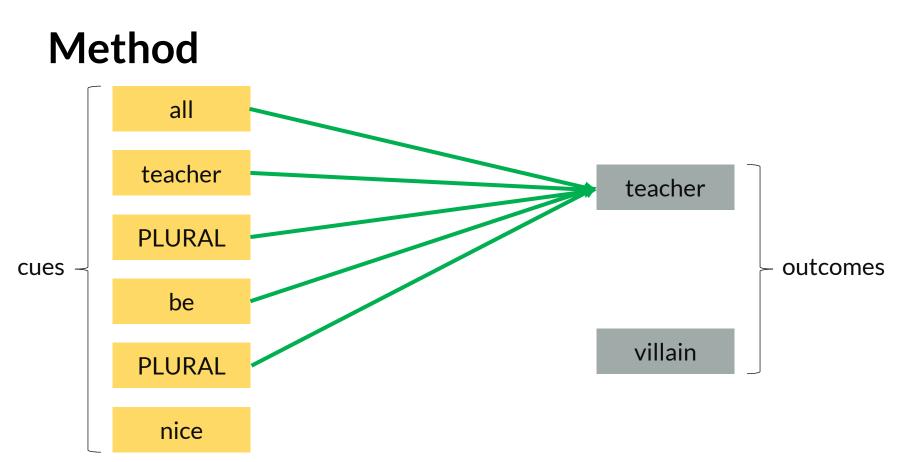
	all	teacher	PLURAL	be	nice	villain	evil
teacher	+	+					
villain							



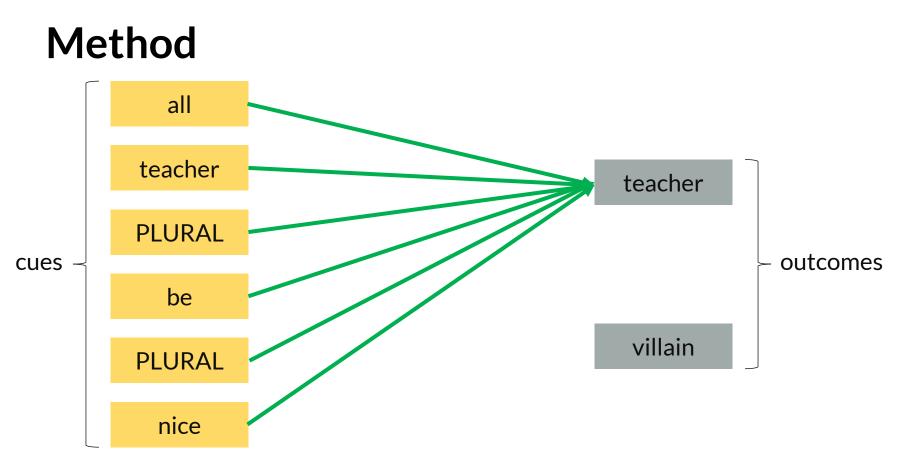
	all	teacher	PLURAL	be	nice	villain	evil
teacher	+	+	+				
villain							



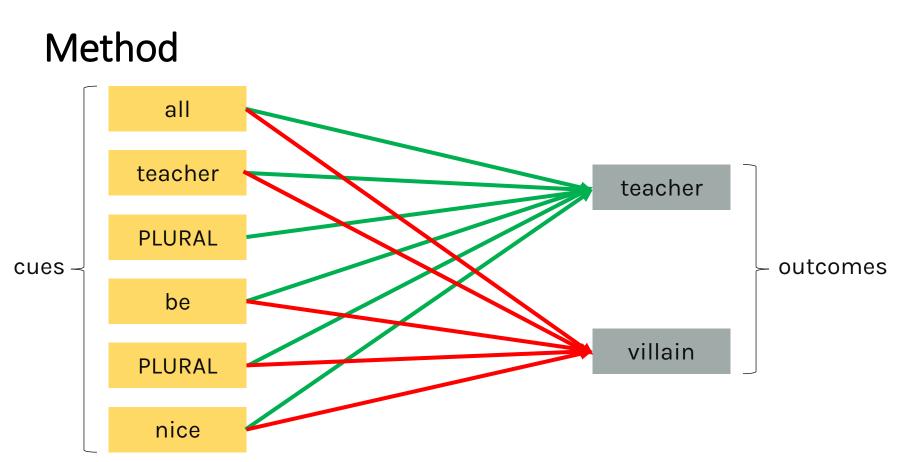
	all	teacher	PLURAL	be	nice	villain	evil
teacher	+	+	+	+			
villain							



	all	teacher	PLURAL	be	nice	villain	evil
teacher	+	+	++	+			
villain							



	all	teacher	PLURAL	be	nice	villain	evil
teacher	+	+	++	+	+		
villain							



	all	teacher	PLURAL	be	nice	villain	evil
teacher	+	+	++	+	+	-	-
villain	-	-	-	-	-		

