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Eventuality-related nominalizations

• What are eventuality-related nominalizations? 

(1) employee, trainee

→ participant reading 

(2) Markham sets down the rules about park befoulment. (Plag et al. 2018: 474)

→whole eventuality reading

• Semantic representation provides eventualities and participants for 

word formation process (e.g., Plag et al. 2018, Kawaletz 2023, Schneider 2023)

• Research tends to focus on deverbal nominalizations (e.g., Barker 1998; 

Alexiadou 2010; Kawaletz & Plag 2015; Plag et al. 2018; Kawaletz 2023)
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Eventuality-related nominalizations

• However, many nominalizing suffixes also attach to non-verbal bases 

(e.g., Plag 1999, 2004, Bauer et al. 2013, Schneider 2023)

(3) covenantee

(4) devilment

(5) ozonation

• Thus far, unclear why and how non-deverbal eventuality-related 

nominalizations work

• Aim of this paper: explore potential semantic differences between 

deverbal and denominal eventuality-related nominalizations
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Method: linear discriminative learning

• Computational methods proved to be useful for semantic analyses, 

e.g., linear discriminative learning – LDL (e.g., Chuang et al. 2021, Schmitz et al. 2021, 

Stein & Plag 2021, Schmitz et al. 2022, Schmitz et al. 2023)

• In this usage-based approach, morphology resides in the semantic 

and phonological relationships between entries in the mental 

lexicon

• LDL simulates an individual’s mental lexicon incl. all entries and 

target words (e.g., Baayen et al., 2019)

• Measures extracted from the simulated lexicon express semantic 

and phonological relationships of the entries
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Method: linear discriminative learning

• Form matrix C contains information on word forms

• Here: trigrams

7

#dr dre res ess ss# #pe pea eac ach ch#

dress 1 1 1 1 1 0 0 0 0 0

peach 0 0 0 0 0 1 1 1 1 1
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• Semantic matrix S contains word vectors 

• From naive discriminative learning 

(NDL, Baayen & Ramscar 2015; vectors from Baayen et al. 2019)

8

skirt t-shirt apple banana

dress 0.45 0.26 0.03 0.008

peach 0.006 0.002 0.34 0.48
word vectors
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Analysis 1

• The similarity of bases and derivates is computed via their vectors

• The measure of choice for this analysis is cosine similarity

• Cosine similarity measures the similarity between two vectors by 

computing the angle between the two vectors

• Higher cosine similarity values indicate a higher degree of similarity
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Analysis 2
Which factors influence the semantic similarity of 
derivatives and bases?
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Measures

• Traditional measures

• base polysemy

• relative frequency

• word class of base

• LDL measures 

• Semantic co-activation

higher = higher degree of co-activation in the lexicon

• Neighborhood density

denser = more other words have similar semantics
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• Beta regression statistical tool as cosine similarity in range of (0,1)

• Beta regression analyses performed for each suffix

• 𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ~

𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝑐𝑜-𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 +

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 +

𝑏𝑎𝑠𝑒 𝑝𝑜𝑙𝑦𝑠𝑒𝑚𝑦 +

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 +

𝑤𝑜𝑟𝑑 𝑐𝑙𝑎𝑠𝑠 𝑜𝑓 𝑏𝑎𝑠𝑒
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Discussion

RQ2

Which factors influence the semantic similarity of derivatives 
and bases?
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