

A discriminative account of masculine generics and their masculine bias in German

Dominic Schmitz, Viktoria Schneider, Janina Esser

16th International Cognitive Linguistics Conference

08/08/2023

word	referent gender(s)	grammatical gender	number
Lehrer	male	masculine	
Lehrer	male or female	masculine	singular
Lehrerin	female	feminine	
Lehrer	male	masculine	
Lehrer	male or female	masculine	plural
Lehrerinnen	female	feminine	

word	referent gender(s)	grammatical gender	number
Lehrer	male	masculine	
Lehrer	male or female	masculine	singular
Lehrerin	female	feminine	
Lehrer	male	masculine	
Lehrer	male or female	masculine	plural
Lehrerinnen	female	feminine	

	word	referent gender(s)	grammatical gender	number
paradigm	Lehrer	male	masculine	
	Lehrer	male or female	masculine	singular
	Lehrerin	female	feminine	
	Lehrer	male	masculine	
	Lehrer	male or female	masculine	plural
	Lehrerinnen	female	feminine	

• in German, role nouns such as *Lehrer* 'teacher' can be used as generic forms

	word	referent gender(s)	grammatical gender	number
Γ	Lehrer	male	masculine	
n	Lehrer	male or female	masculine	singular
: wo digr	Lehrerin	female	feminine	
ara.	Lehrer	male	masculine	
p p	Lehrer	male or female	masculine	plural
	Lehrerinnen	female	feminine	

- generic masculines are
 - orthographically and phonologically **identical** to explicit masculines
 - used to describe individuals of all genders in singular and plural contexts
 - traditionally assumed to "abstract away" notions of gender,

i.e. to be gender-neutral (cf. Doleschal 2002)

08/08/2023

 however, previous research has cast doubt on the gender-neutral use of generic masculines

- however, previous research has cast doubt on the gender-neutral use of generic masculines
- most (if not all) behavioural studies on the subject find one overall result
 - → generic masculines are not gender-neutral but show a clear bias towards the explicit masculine reading (e.g. Demarmels 2017; Garnham et al. 2012; Gygax et al. 2008; Irmen & Kurovskaja 2010; Irmen & Linner 2005; Koch 2021; Misersky et al. 2019; Stahlberg & Sczesny, 2001)

- however, previous research has cast doubt on the gender-neutral use of generic masculines
- most (if not all) behavioural studies on the subject find one overall result
 - → generic masculines are not gender-neutral but show a clear bias towards the explicit masculine reading (e.g. Demarmels 2017; Garnham et al. 2012; Gygax et al. 2008; Irmen & Kurovskaja 2010; Irmen & Linner 2005; Koch 2021; Misersky et al. 2019; Stahlberg & Sczesny, 2001)
- even though a generic masculine may be used with the intention of considering all genders...

- however, previous research has cast doubt on the gender-neutral use of generic masculines
- most (if not all) behavioural studies on the subject find one overall result
 - → generic masculines are not gender-neutral but show a clear bias towards the explicit masculine reading (e.g. Demarmels 2017; Garnham et al. 2012; Gygax et al. 2008; Irmen & Kurovskaja 2010; Irmen & Linner 2005; Koch 2021; Misersky et al. 2019; Stahlberg & Sczesny, 2001)
- even though a generic masculine may be used with the intention of considering all genders...
- ...this intention is not fully translated by the receiver's comprehension system

- however, previous research has cast doubt on the gender-neutral use of generic masculines
- most (if not all) behavioural studies on the subject find one overall result
 - → generic masculines are not gender-neutral but show a clear bias towards the explicit masculine reading (e.g. Demarmels 2017; Garnham et al. 2012; Gygax et al. 2008; Irmen & Kurovskaja 2010; Irmen & Linner 2005; Koch 2021; Misersky et al. 2019; Stahlberg & Sczesny, 2001)
- even though a generic masculine may be used with the intention of considering all genders...
- ...this intention is not fully translated by the receiver's comprehension system
- instead, a reading favouring male individuals is received

Issue 1: Stereotypes

Potential effects of stereotypicality are rarely taken into account in previous studies.

Issue 1: Stereotypes

Potential effects of stereotypicality are rarely taken into account in previous studies.

Issue 2: Data

Studies make use of data elicited for the respective study, not of natural language data.

Issue 1: Stereotypes

Potential effects of stereotypicality are rarely taken into account in previous studies.

Issue 2: Data

Studies make use of data elicited for the respective study, not of natural language data.

Issue 3: Semantics

Most studies provide evidence for a masculine bias but do not deliver an explanation for the masculine bias.

Issue 1: Stereotypes

Potential effects of stereotypicality are rarely taken into account in previous studies.

 \rightarrow stereotypicality as covariate

Issue 2: Data

Studies make use of data elicited for the respective study, not of natural language data.

Issue 3: Semantics

Most studies provide evidence for a masculine bias but do not deliver an explanation for the masculine bias.

Issue 1: Stereotypes

Potential effects of stereotypicality are rarely taken into account in previous studies.

 \rightarrow stereotypicality as covariate

Issue 2: Data

Studies make use of data elicited for the respective study, not of natural language data.

 \rightarrow use corpus data

Issue 3: Semantics

Most studies provide evidence for a masculine bias but do not deliver an explanation for the masculine bias.

Issue 1: Stereotypes

Potential effects of stereotypicality are rarely taken into account in previous studies.

 \rightarrow stereotypicality as covariate

Issue 2: Data

Studies make use of data elicited for the respective study, not of natural language data.

 \rightarrow use corpus data

Issue 3: Semantics

Most studies provide evidence for a masculine bias but do not deliver an explanation for the masculine bias.

 \rightarrow use naive and linear discriminative learning

Research questions

Research questions

RQ 1

Does discriminative learning provide insight into the semantics of masculine generics, masculine explicits, and feminine explicits?

Research questions

RQ 1

Does discriminative learning provide insight into the semantics of masculine generics, masculine explicits, and feminine explicits?

RQ 2

If so, how do the semantics of masculine generics differ from the semantics of masculine explicits and feminine explicits?

Discriminative Learning

• we simulate a mental lexicon by implementing a linear discriminative

learning network (e.g. Baayen et al. 2019)

- we simulate a mental lexicon by implementing a linear discriminative learning network (e.g. Baayen et al. 2019)
- using this mental lexicon, we can extract semantic measures for its entries

- we simulate a mental lexicon by implementing a linear discriminative learning network (e.g. Baayen et al. 2019)
- using this mental lexicon, we can extract semantic measures for its entries

1. corpus

- we simulate a mental lexicon by implementing a linear discriminative learning network (e.g. Baayen et al. 2019)
- using this mental lexicon, we can extract semantic measures for its entries

- we simulate a mental lexicon by implementing a linear discriminative learning network (e.g. Baayen et al. 2019)
- using this mental lexicon, we can extract semantic measures for its entries

- we simulate a mental lexicon by implementing a linear discriminative learning network (e.g. Baayen et al. 2019)
- using this mental lexicon, we can extract semantic measures for its entries

• 113 target word paradigms were adapted from a study on the influence of stereotypicality on the comprehension of generic masculines (Gabriel et al. 2008)

- 113 target word paradigms were adapted from a study on the influence of stereotypicality on the comprehension of generic masculines (Gabriel et al. 2008)
- all target word paradigms
 - consist of role nouns
 - have common explicit feminine forms

- 113 target word paradigms were adapted from a study on the influence of stereotypicality on the comprehension of generic masculines (Gabriel et al. 2008)
- all target word paradigms
 - consist of role nouns
 - have common explicit feminine forms

generic & explicit masculines
Anwalt
Bäcker
Historiker
Maurer
Professor
Wärter

- 113 target word paradigms were adapted from a study on the influence of stereotypicality on the comprehension of generic masculines (Gabriel et al. 2008)
- all target word paradigms
 - consist of role nouns
 - have common explicit feminine forms

generic & explicit masculines	explicit feminines	translation
Anwalt	Anwältin	'lawyer'
Bäcker	Bäckerin	'baker'
Historiker	Historikerin	'historian'
Maurer	Maurerin	'mason'
Professor	Professorin	'professor'
Wärter	Wärterin	'guard'

Corpus
Corpus

10 million sentences were extracted from the Leipzig Corpora Collection's subcorpus "News" (Goldhahn et al. 2012) → 1 million for each year from 2010 to 2019

Corpus

- 10 million sentences were extracted from the Leipzig Corpora Collection's subcorpus "News" (Goldhahn et al. 2012) → 1 million for each year from 2010 to 2019
- from the 10 million sentences, the following was sampled
 - 800,000 sentences without any target words
 - 30,000 sentences with target words
 - 49,044,960 words overall

Corpus

- 10 million sentences were extracted from the Leipzig Corpora Collection's subcorpus "News" (Goldhahn et al. 2012) → 1 million for each year from 2010 to 2019
- from the 10 million sentences, the following was sampled
 - 800,000 sentences without any target words
 - 30,000 sentences with target words
 - 49,044,960 words overall
- overall frequency of target word paradigms in our corpus is relative to their overall frequency in the 10 million sentences, e.g.
 - target word paradigm with 20,000+ occurrences = 600 samples
 - target word paradigm with fewer than 200 occurrences = 100 samples

 the 30,000 sentences containing target words were manually annotated by two authors and two assistants, all of which were native speakers of German

- the 30,000 sentences containing target words were manually annotated by two authors and two assistants, all of which were native speakers of German
- for each target word occurrence, it was annotated whether the form was
 - masculine or feminine; singular or plural; explicit or generic

- the 30,000 sentences containing target words were manually annotated by two authors and two assistants, all of which were native speakers of German
- for each target word occurrence, it was annotated whether the form was
 - masculine or feminine; singular or plural; explicit or generic
- the 800,000 sentences without and the 30,000 sentences with target words were then automatically analysed and annotated using the RNNTagger software (Schmid, 1999)

- the 30,000 sentences containing target words were manually annotated by two authors and two assistants, all of which were native speakers of German
- for each target word occurrence, it was annotated whether the form was
 - masculine or feminine; singular or plural; explicit or generic
- the 800,000 sentences without and the 30,000 sentences with target words were then automatically analysed and annotated using the RNNTagger software (Schmid, 1999)
- tagged information consisted of words' base forms and information on inflectional grammar

- we simulate a mental lexicon by implementing a linear discriminative learning network (e.g. Baayen et al. 2019)
- using this mental lexicon, we can extract semantic measures for its entries

- we simulate a mental lexicon by implementing a linear discriminative learning network (e.g. Baayen et al. 2019)
- using this mental lexicon, we can extract semantic measures for its entries

 semantic vectors were computed based on the corpus for words and inflectional functions with Naive Discriminative Learning (NDL; e.g. Baayen & Ramscar, 2015)

- semantic vectors were computed based on the corpus for words and inflectional functions with Naive Discriminative Learning (NDL; e.g. Baayen & Ramscar, 2015)
- NDL follows the Rescorla-Wagner rules (Rescorla & Wagner, 1972)
 - **outcomes** (word forms) are predicted by **cues** (words/inflection)
 - the associative strength between an outcome and a cue is represented by a single number

- semantic vectors were computed based on the corpus for words and inflectional functions with Naive Discriminative Learning (NDL; e.g. Baayen & Ramscar, 2015)
- NDL follows the Rescorla-Wagner rules (Rescorla & Wagner, 1972)
 - outcomes (word forms) are predicted by cues (words/inflection)
 - the associative strength between an outcome and a cue is represented by a single number
- we used each sentence to predict each individual word within the sentence by the other words in that sentence

red	yellow	orange	purple	blue	sweet	sour	round	long
1					1		1	
	1				1			1
		1				1	1	
			1		1		1	
				1	1		1	
1					1			1
	1					1	1	1

	red	yellow	orange	purple	blue	sweet	sour	round	long
Č	30					30		30	
		15				15			15
			18				18	18	
				10		10		10	
					5	5		5	
	45					45		45	45
		20					20	20	20

red	yellow	orange	purple	blue	sweet	sour	round	long
29	1				30		30	
	15				15			15
		18				18	18	
			10		10		10	
				5	5		5	
45					45		45	45
	20					20	20	20

red	yellow	orange	purple	blue	sweet	sour	round	long
29	1				29	1	30	
	15				15			15
		18				18	18	
			10		10		10	
				5	5		5	
45					45		45	45
	20					20	20	20

red	yellow	orange	purple	blue	sweet	sour	round	long
29	1	-1	-3	-2	29	1	30	-1
	15				15			15
		18				18	18	
			10		10		10	
				5	5		5	
45					45		45	45
	20					20	20	20

red	yellow	orange	purple	blue	sweet	sour	round	long
29	1	-1	-3	-2	29	1	30	-1
-10	15	-10	-8	-6	15	-11	-5	15
-6	-7	18	-14	-15	3	15	18	-2
-5	-1	-6	10	-9	5	5	10	-7
-6	-9	-19	2	3	4	1	5	-5
45	-6	-9	-14	-1	25	20	45	45
-1	20	-5	-6	-8	-4	20	20	20

	red	yellow	orange	purple	blue	sweet	sour	round	long
Č	29	1	-1	-3	-2	29	1	30	-1
	-10	15	-10	-8	-6	15	-11	-5	15
	-6	-7	18	-14	-15	3	15	18	-2
	-5	-1	-6	10	-9	5	5	10	-7
	-6	-9	-19	2	3	4	1	5	-5
	45	-6	-9	-14	-1	25	20	45	45
	-1	20	-5	-6	-8	-4	20	20	20

	red	yellow	orange	purple	blue	sweet	sour
apple	29	1	-1	-3	-2	29	1
banana	-10	15	-10	-8	-6	15	-11
orange	-6	-7	18	-14	-15	3	15
grape	-5	-1	-6	10	-9	5	5
blueberry	-6	-9	-19	2	3	4	1
strawberry	45	-6	-9	-14	-1	25	20
lemon	-1	20	-5	-6	-8	-4	20

	red	yellow	orange	purple	blue	sweet	sour
apple	29	1	-1	-3	-2	29	1
banana	-10	15	-10	-8	-6	15	-11
orange	-6	-7	18	-14	-15	3	15
grape	-5	-1	-6	10	-9	5	5
blueberry	-6	-9	-19	2	3	4	1
strawberry	45	-6	-9	-14	-1	25	20
lemon	-1	20	-5	-6	-8	-4	20

Semantic vectors: Role nouns

• for content words, their semantic vector is the sum of the vectors of their

parts, e.g. $\overrightarrow{apples} = \overrightarrow{apple} + \overrightarrow{plural}$

Semantic vectors: Role nouns

- for content words, their semantic vector is the sum of the vectors of their parts, e.g. $\overrightarrow{apples} = \overrightarrow{apple} + \overrightarrow{plural}$
- thus, e.g., the semantics of the target word paradigm Lehrer 'teacher' consists of

target	base		number		gender		genericity
Lehrer	Lehrer	+	singular	+	masculine	+	generic
Lehrer	Lehrer	+	singular	+	masculine	+	explicit
Lehrerin	Lehrer	+	singular	+	feminine	+	explicit
Lehrer	Lehrer	+	plural	+	masculine	+	generic
Lehrer	Lehrer	+	plural	+	masculine	+	explicit
Lehrerinnen	Lehrer	+	plural	+	feminine	+	explicit

- we simulate a mental lexicon by implementing a linear discriminative learning network (e.g. Baayen et al. 2019)
- using this mental lexicon, we can extract semantic measures for its entries

- we simulate a mental lexicon by implementing a linear discriminative learning network (e.g. Baayen et al. 2019)
- using this mental lexicon, we can extract semantic measures for its entries

Forms

Forms

• word forms are represented by triphones

Forms

• word forms are represented by triphones

form	#le	ler	erA	rA#	Arl	rln	In#
Lehrer	1	1	1	1	0	0	0
Lehrer	1	1	1	1	0	0	0
Lehrerin	1	1	1	0	1	1	1

- we simulate a mental lexicon by implementing a linear discriminative learning network (e.g. Baayen et al. 2019)
- using this mental lexicon, we can extract semantic measures for its entries

- we simulate a mental lexicon by implementing a linear discriminative learning network (e.g. Baayen et al. 2019)
- using this mental lexicon, we can extract semantic measures for its entries

- we simulate a mental lexicon by implementing a linear discriminative learning network (e.g. Baayen et al. 2019)
- using this mental lexicon, we can extract semantic measures for its entries

Learning comprehension

• Comprehension is learnt by linearly mapping the matrix of forms onto the matrix of semantic vectors
• Comprehension is learnt by linearly mapping the matrix of forms onto the matrix of semantic vectors

semantic vectors

• Comprehension is learnt by linearly mapping the matrix of forms onto the matrix of semantic vectors

• Comprehension is learnt by linearly mapping the matrix of forms onto the matrix of semantic vectors

• Comprehension is learnt by linearly mapping the matrix of forms onto the matrix of semantic vectors

Analysis

Multinomial Logistic Regression

COMPREHENSION QUALITY

correlation of a target's original and estimated vectors higher correlation = higher comprehension quality

COMPREHENSION QUALITY

correlation of a target's original and estimated vectors higher correlation = higher comprehension quality

NEIGHBOURHOOD DENSITY

correlation of a target with its 8 nearest neighbours higher density = denser neighbourhood

COMPREHENSION QUALITY

correlation of a target's original and estimated vectors higher correlation = higher comprehension quality

NEIGHBOURHOOD DENSITY

correlation of a target with its 8 nearest neighbours higher density = denser neighbourhood

ACTIVATION DIVERSITY

Euclidian norm of a target's vector

higher norm = higher degree of co-activation

COMPREHENSION QUALITY

correlation of a target's original and estimated vectors higher correlation = higher comprehension quality

NEIGHBOURHOOD DENSITY

correlation of a target with its 8 nearest neighbours higher density = denser neighbourhood

ACTIVATION DIVERSITY

Euclidian norm of a target's vector

higher norm = higher degree of co-activation

STEREOTYPICALITY

adopted from Gabriel et al. (2008)

• dependent variable: **Type**

• dependent variable: **Type**

singular generic masculine; singular explicit masculine; singular explicit feminine plural generic masculine; plural explicit masculine; plural explicit feminine

explanatory variables

• dependent variable: **Type**

- explanatory variables
 - ACTIVATION DIVERSITY

• dependent variable: **Type**

- explanatory variables
 - ACTIVATION DIVERSITY
 - **PRINCIPAL COMPONENT** (COMPREHENSION QUALITY + NEIGHBOURHOOD DENSITY)

• dependent variable: **Type**

- explanatory variables
 - ACTIVATION DIVERSITY
 - **PRINCIPAL COMPONENT** (COMPREHENSION QUALITY + NEIGHBOURHOOD DENSITY)
 - STEREOTYPICALITY JUDGEMENTS (Gabriel et al. 2008)

ACTIVATION DIVERSITY

08/08/2023

COMPREHENSION QUALITY + NEIGHBOURHOOD DENSITY

COMPREHENSION QUALITY + NEIGHBOURHOOD DENSITY

STEREOTYPICALITY JUDGEMENTS

no significant effects!

08/08/2023

RQ 1

Does discriminative learning provide insight into the semantics of masculine generics, masculine explicits, and feminine explicits?

 \rightarrow yes!

RQ 1

Does discriminative learning provide insight into the semantics of masculine generics, masculine explicits, and feminine explicits?

 \rightarrow yes!

RQ 2

If so, how do the semantics of masculine generics differ from the semantics of masculine explicits and feminine explicits?

 \rightarrow well...

RQ 1

Does discriminative learning provide insight into the semantics of masculine generics, masculine explicits, and feminine explicits?

 \rightarrow yes!

RQ 2

If so, how do the semantics of masculine generics differ from the semantics of masculine explicits and feminine explicits?

 \rightarrow well...

So what do we learn from all of this?

ACTIVATION DIVERSITY

• high for singular feminine forms

- high for singular feminine forms
- medium for masculine forms

- high for singular feminine forms
- medium for masculine forms
- low for plural feminine forms

- high for singular feminine forms
- medium for masculine forms
- low for plural feminine forms
- **PRINCIPAL COMPONENT** (COMPREHENSION QUALITY + NEIGHBOURHOOD DENSITY)

- high for singular feminine forms
- medium for masculine forms
- low for plural feminine forms
- **PRINCIPAL COMPONENT** (COMPREHENSION QUALITY + NEIGHBOURHOOD DENSITY)
 - feminine role nouns 'live' in their own part of the semantic space
 - \rightarrow nearest neighbours are all other feminine role nouns

- high for singular feminine forms
- medium for masculine forms
- low for plural feminine forms
- **PRINCIPAL COMPONENT** (COMPREHENSION QUALITY + NEIGHBOURHOOD DENSITY)
 - feminine role nouns 'live' in their own part of the semantic space
 → nearest neighbours are all other feminine role nouns
 - feminine role nouns show interpretable exponent of their grammatical gender
 → shift in semantic space
• our findings are in line with assumptions found in previous research

- our findings are in line with assumptions found in previous research
 - Stahlberg et al. (2001)

masculine gender of [masculine] generics has a semantic component of "maleness"

- our findings are in line with assumptions found in previous research
 - Stahlberg et al. (2001)

masculine gender of [masculine] generics has a semantic component of "maleness"

• Irmen & Linner (2005)

semantic similarity of generic and explicit masculines due to their resonance with the lexicon and each other

- our findings are in line with assumptions found in previous research
 - Stahlberg et al. (2001)

masculine gender of [masculine] generics has a semantic component of "maleness"

• Irmen & Linner (2005)

semantic similarity of generic and explicit masculines due to their resonance with the lexicon and each other

• Gygax et al. (2012) and Gygax et al. (2021)

generic masculines activate the underlying representations of explicit masculines, leading to a semantic activation of explicit masculines, thus a male bias

• the masculine bias found in generic masculines is due to their underlying semantic

features which they share with explicit masculines

- the masculine bias found in generic masculines is due to their underlying semantic features which they share with explicit masculines
- the language itself is the reason for the masculine bias, not any non-linguistic influences

- the masculine bias found in generic masculines is due to their underlying semantic features which they share with explicit masculines
- the language itself is the reason for the masculine bias, not any non-linguistic influences
- our findings confirm the bias found in previous behavioural studies (e.g. Demarmels, 2017; Garnham et al., 2012; Gygax et al., 2008; Irmen & Kurovskaja, 2010; Irmen & Linner, 2005; Koch, 2021; Misersky et al., 2019; Stahlberg & Sczesny, 2001)

- the masculine bias found in generic masculines is due to their underlying semantic features which they share with explicit masculines
- the language itself is the reason for the masculine bias, not any non-linguistic influences
- our findings confirm the bias found in previous behavioural studies (e.g. Demarmels, 2017; Garnham et al., 2012; Gygax et al., 2008; Irmen & Kurovskaja, 2010; Irmen & Linner, 2005; Koch, 2021; Misersky et al., 2019; Stahlberg & Sczesny, 2001)
- future research will show
 - whether the LDL measures computed for our data are predictive of behavioural measures
 - how (new & allegedly) more neutral forms, e.g. *Lehrer*innen*, *LehrerInnen*, perform

Thank you!

Newly published in Glossa Psycholinguistics: 10.5070/G6011192

References 1/2

- Baayen, R. H., Chuang, Y.-Y., Shafaei-Bajestan, E., & Blevins, J. P. (2019). The discriminative Lexicon: A unified computational model for the lexicon and lexical processing in comprehension and production grounded not in (de)composition but in linear discriminative learning. Complexity, 2019, 1–39. https://doi.org/10.1155/2019/4895891
- Baayen, R. H., & Ramscar, M. (2015). Abstraction, storage and naive discriminative learning. *Handbook of Cognitive Linguistics*, 39, 100–120. https://doi.org/10.1515/9783110292022-006
- Chuang, Y.-Y., Vollmer, M. L., Shafaei-Bajestan, E., Gahl, S., Hendrix, P., & Baayen, R. H. (2021). The processing of pseudoword form and meaning in production and comprehension: A computational modeling approach using linear discriminative learning. *Behavior Research Methods*, *53*(3), 945–976. https://doi.org/10.3758/s13428-020-01356-w
- Demarmels, S. (2017). "Gesucht: Assistentin oder Sekretär der Geschäftsleitung" Gendersensitive Formulierungen in Stellenanzeigen aus der Perspektive der Textsorte. In *Stellenanzeigen als Instrument des Employer Branding in Europa*. https://doi.org/10.1007/978-3-658-12719-0_11
- Gabriel, U., Gygax, P., Sarrasin, O., Garnham, A., & Oakhill, J. (2008). Au pairs are rarely male: Norms on the gender perception of role names across English, French, and German. *Behavior Research Methods*, 40(1), 206–212. https://doi.org/10.3758/BRM.40.1.206
- Garnham, A., Gabriel, U., Sarrasin, O., Gygax, P., & Oakhill, J. (2012). Gender Representation in Different Languages and Grammatical Marking on Pronouns: When Beauticians, Musicians, and Mechanics Remain Men. *Discourse Processes*, 49(6), 481–500. https://doi.org/10.1080/0163853X.2012.688184
- Goldhahn, D., Eckart, T., & Quasthoff, U. (2012). Building Large Monolingual Dictionaries at the Leipzig Corpora Collection: From 100 to 200 Languages. *Proceedings of the 8th International Language Resources and Evaluation (LREC'12)*.
- Gygax, P., Gabriel, U., Sarrasin, O., Oakhill, J., & Garnham, A. (2008). Generically intended, but specifically interpreted: When beauticians, musicians, and mechanics are all men. *Language and Cognitive Processes*, *23*(*3*), 464–485. https://doi.org/10.1080/01690960701702035
- Gygax, P., Sato, S., Öttl, A., & Gabriel, U. (2021). The masculine form in grammatically gendered languages and its multiple interpretations: a challenge for our cognitive system. *Language Sciences*, 83, 101328. https://doi.org/10.1016/j.langsci.2020.101328

References 2/2

- Gygax, P., Sato, S., Öttl, A., & Gabriel, U. (2021). The masculine form in grammatically gendered languages and its multiple interpretations: a challenge for our cognitive system. *Language Sciences*, 83, 101328. https://doi.org/10.1016/j.langsci.2020.101328
- Irmen, L., & Kurovskaja, J. (2010). On the semantic content of grammatical gender and its impact on the representation of human referents. *Experimental Psychology*, *57*(*5*), 367–375. https://doi.org/10.1027/1618-3169/a000044
- Irmen, L., & Linner, U. (2005). Die Repräsentation generisch maskuliner Personenbezeichnungen. Zeitschrift Für Psychologie / Journal of Psychology, 213(3), 167–175. https://doi.org/10.1026/0044-3409.213.3.167
- Koch, M. (2021). Kognitive Effekte des generischen Maskulinums und genderneutraler Alternativen im Deutschen eine empirische Untersuchung. Master's Thesis. Technische Universität Braunschweig.
- Misersky, J., Majid, A., & Snijders, T. M. (2019). Grammatical Gender in German Influences How Role-Nouns Are Interpreted: Evidence from ERPs. *Discourse Processes*, *56*(8), 643–654. https://doi.org/10.1080/0163853X.2018.1541382
- Schmid, H. (1999). Improvements in part-of-speech tagging with an application to German. In S. Armstrong, K. Church, P. Isabelle, S. Manzi, E. Tzoukermann, & D. Yarowsky (Eds.), *Natural language processing using very large corpora* (pp. 13–25). Springer. https://doi.org/10.1007/978-94-017-2390-9_2
- Schmitz, D., Plag, I., Baer-Henney, D., & Stein, S. D. (2021). Durational Differences of Word-Final /s/ Emerge From the Lexicon: Modelling Morpho-Phonetic Effects in Pseudowords With Linear Discriminative Learning. *Frontiers in Psychology*, 12. https://doi.org/10.3389/fpsyg.2021.680889
- Sering, T., Weitz, M., Künstle, D.-E., Schneider, L., Shafaei-Bajestan, E. (2022). Pyndl: Naive discriminative learning in python. https://doi.org/10.5281/zenodo.597964
- Stahlberg, D., & Sczesny, S. (2001). Effekte des generischen Maskulinums und alternativer Sprachformen auf den gedanklichen Einbezug von Frauen. *Psychologische Rundschau*, *52*(3), 131–140. https://doi.org/10.1026//0033-3042.52.3.131
- Stahlberg, D., Sczesny, S., & Braun, F. (2001). Name Your Favorite Musician. *Journal of Language and Social Psychology*, 20(4), 464–469. https://doi.org/10.1177/0261927X01020004004

• using data from news websites allowed us to strictly control for genre

- using data from news websites allowed us to strictly control for genre
- our results cannot be potential artefacts of 'genre confusion', i.e. of chance due to an uncontrolled mix of different styles and genres

- using data from news websites allowed us to strictly control for genre
- our results cannot be potential artefacts of 'genre confusion', i.e. of chance due to an uncontrolled mix of different styles and genres
- however, this indicates that chances are given that other sources/genres/styles might lead to different results

- using data from news websites allowed us to strictly control for genre
- our results cannot be potential artefacts of 'genre confusion', i.e. of chance due to an uncontrolled mix of different styles and genres
- however, this indicates that chances are given that other sources/genres/styles might lead to different results

• our corpus did not contain any 'new forms', e.g. gender star forms or capital-I forms: *Lehrer*in* or *LehrerIn* 'teacher (of any sex or gender)'

- using data from news websites allowed us to strictly control for genre
- our results cannot be potential artefacts of 'genre confusion', i.e. of chance due to an uncontrolled mix of different styles and genres
- however, this indicates that chances are given that other sources/genres/styles might lead to different results

- our corpus did not contain any 'new forms', e.g. gender star forms or capital-I forms: *Lehrer*in* or *LehrerIn* 'teacher (of any sex or gender)'
- hence our simulated lexicon will not be 'confused' by such forms / if the generic masculine shows a bias, it is not due to such new forms

	all	teacher	PLURAL	be	nice	villain	evil
teacher							
villain							

Example: All teachers are nice.

	all	teacher	PLURAL	be	nice	villain	evil
teacher	+						
villain							

30/11/2022

	all	teacher	PLURAL	be	nice	villain	evil
teacher	+	+					
villain							

	all	teacher	PLURAL	be	nice	villain	evil
teacher	+	+	+				
villain							

	all	teacher	PLURAL	be	nice	villain	evil
teacher	+	+	+	+			
villain							

	all	teacher	PLURAL	be	nice	villain	evil
teacher	+	+	++	+			
villain							

	all	teacher	PLURAL	be	nice	villain	evil
teacher	+	+	++	+	+		
villain							

	all	teacher	PLURAL	be	nice	villain	evil
teacher	+	+	++	+	+	-	-
villain	-	-	-	-	-		

Semantic vectors

 repeating this procedure for 830,000 sentences, we obtained association weights for all target words, inflectional functions, and a huge number of other words

- repeating this procedure for 830,000 sentences, we obtained association weights for all target words, inflectional functions, and a huge number of other words
- taking these rows of association weights, we obtain semantic vectors of individual words and inflectional functions of length 7,500

- repeating this procedure for 830,000 sentences, we obtained association weights for all target words, inflectional functions, and a huge number of other words
- taking these rows of association weights, we obtain semantic vectors of individual words and inflectional functions of length 7,500
- for example:

	all	teacher	PLURAL	be	nice	villain	evil
teacher	0.31	1.0	0.57	0.43	0.15	0.00071	0.0007
villain	0.0003	0.001	0.0005	0.0004	0.0091	1.0	0.96

- repeating this procedure for 830,000 sentences, we obtained association weights for all target words, inflectional functions, and a huge number of other words
- taking these rows of association weights, we obtain semantic vectors of individual words and inflectional functions of length 7,500
- for example:

teacher	all	teacher	PLURAL	be	nice	villain	evil
teacher	0.31	1.0	0.57	0.43	0.15	0.00071	0.0007
villain	0.0003	0.001	0.0005	0.0004	0.0091	1.0	0.96

Semantic Measures

COMPREHENSION QUALITY

correlation of a target's original and estimated vectors higher correlation = higher comprehension quality

comprehension quality
Semantic Measures

NEIGHBOURHOOD DENSITY

correlation of a target with its 8 nearest neighbours higher density = denser neighbourhood

semantic neighbourhood density

Semantic Measures

ACTIVATION DIVERSITY

Euclidian norm of a target's vector higher norm = higher degree of co-activation

semantic activation diversity