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Generic masculines in German

• in German, role nouns such as Lehrer ‘teacher’ can be used as generic forms

• generic masculines are

• orthographically and phonologically identical to explicit masculines

• used to describe individuals of all genders in singular and plural contexts

• traditionally assumed to “abstract away” notions of gender, 

i.e. to be gender-neutral (cf. Doleschal 2002)

08/08/2023 2

word referent gender(s) grammatical gender number

Lehrer male masculine

singularLehrer male or female masculine

Lehrerin female feminine

Lehrer male masculine

pluralLehrer male or female masculine

Lehrerinnen female feminine

ta
rg

e
t 

w
o

rd
p

a
ra

d
ig

m



Previous research

08/08/2023 3



Previous research

• however, previous research has cast doubt on the gender-neutral use of 

generic masculines

08/08/2023 3



Previous research

• however, previous research has cast doubt on the gender-neutral use of 

generic masculines

• most (if not all) behavioural studies on the subject find one overall result

→ generic masculines are not gender-neutral but show a clear bias towards the 

explicit masculine reading (e.g. Demarmels 2017; Garnham et al. 2012; Gygax et al. 2008; Irmen & 

Kurovskaja 2010; Irmen & Linner 2005; Koch 2021; Misersky et al. 2019; Stahlberg & Sczesny, 2001)

08/08/2023 3



Previous research

• however, previous research has cast doubt on the gender-neutral use of 

generic masculines

• most (if not all) behavioural studies on the subject find one overall result

→ generic masculines are not gender-neutral but show a clear bias towards the 

explicit masculine reading (e.g. Demarmels 2017; Garnham et al. 2012; Gygax et al. 2008; Irmen & 

Kurovskaja 2010; Irmen & Linner 2005; Koch 2021; Misersky et al. 2019; Stahlberg & Sczesny, 2001)

• even though a generic masculine may be used with the intention of 

considering all genders…

08/08/2023 3



Previous research

• however, previous research has cast doubt on the gender-neutral use of 

generic masculines

• most (if not all) behavioural studies on the subject find one overall result

→ generic masculines are not gender-neutral but show a clear bias towards the 

explicit masculine reading (e.g. Demarmels 2017; Garnham et al. 2012; Gygax et al. 2008; Irmen & 

Kurovskaja 2010; Irmen & Linner 2005; Koch 2021; Misersky et al. 2019; Stahlberg & Sczesny, 2001)

• even though a generic masculine may be used with the intention of 

considering all genders…

• …this intention is not fully translated by the receiver’s comprehension 

system

08/08/2023 3



Previous research

• however, previous research has cast doubt on the gender-neutral use of 

generic masculines

• most (if not all) behavioural studies on the subject find one overall result

→ generic masculines are not gender-neutral but show a clear bias towards the 

explicit masculine reading (e.g. Demarmels 2017; Garnham et al. 2012; Gygax et al. 2008; Irmen & 

Kurovskaja 2010; Irmen & Linner 2005; Koch 2021; Misersky et al. 2019; Stahlberg & Sczesny, 2001)

• even though a generic masculine may be used with the intention of 

considering all genders…

• …this intention is not fully translated by the receiver’s comprehension 

system

• instead, a reading favouring male individuals is received
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Previous research – Issues 

Issue 1: Stereotypes
Potential effects of stereotypicality are rarely taken into account in previous 
studies.

 → stereotypicality as covariate

Issue 2: Data
Studies make use of data elicited for the respective study, not of natural 
language data.

→ use corpus data

Issue 3: Semantics
Most studies provide evidence for a masculine bias but do not deliver an 
explanation for the masculine bias.

→ use naive and linear discriminative learning
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RQ 1
Does discriminative learning provide insight into the semantics of masculine 
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Research questions

RQ 1
Does discriminative learning provide insight into the semantics of masculine 
generics, masculine explicits, and feminine explicits?

RQ 2
If so, how do the semantics of masculine generics differ from the semantics of 
masculine explicits and feminine explicits?
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• 10 million sentences were extracted from the Leipzig Corpora Collection’s 

subcorpus “News” (Goldhahn et al. 2012) → 1 million for each year from 2010 to 

2019

• from the 10 million sentences, the following was sampled

• 800,000 sentences without any target words

• 30,000 sentences with target words

• 49,044,960 words overall

• overall frequency of target word paradigms in our corpus is relative to 

their overall frequency in the 10 million sentences, e.g.

• target word paradigm with 20,000+ occurrences = 600 samples

• target word paradigm with fewer than 200 occurrences = 100 samples
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• the 30,000 sentences containing target words were manually annotated by 

two authors and two assistants, all of which were native speakers of 

German

• for each target word occurrence, it was annotated whether the form was

• masculine or feminine; singular or plural; explicit or generic

• the 800,000 sentences without and the 30,000 sentences with target 

words were then automatically analysed and annotated using the 

RNNTagger software (Schmid, 1999) 

• tagged information consisted of words’ base forms and information on 

inflectional grammar
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• semantic vectors were computed based on the corpus for words and 

inflectional functions with Naive Discriminative Learning (NDL; e.g. Baayen & 

Ramscar, 2015)

• NDL follows the Rescorla-Wagner rules (Rescorla & Wagner, 1972)

• outcomes (word forms) are predicted by cues (words/inflection)

• the associative strength between an outcome and a cue is represented by a 

single number

• we used each sentence to predict each individual word within the sentence 

by the other words in that sentence
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red yellow orange purple blue sweet sour round long

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1 1

Naive Discriminative Learning 
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red yellow orange purple blue sweet sour round long

30 1 -1 -3 -2 30 1 30 -1

-10 15 -10 -8 -6 15 -11 -5 15

-6 -7 18 -14 -15 3 18 18 -2

-5 -1 -6 10 -9 10 5 10 -7

-6 -9 -19 2 5 5 1 5 -5

45 -6 -9 -14 -1 45 20 45 45

-1 20 -5 -6 -8 -4 20 20 20
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Semantic vectors: Role nouns

• for content words, their semantic vector is the sum of the vectors of their 

parts, e.g. 𝑎𝑝𝑝𝑙𝑒𝑠 = 𝑎𝑝𝑝𝑙𝑒 + 𝑝𝑙𝑢𝑟𝑎𝑙
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• thus, e.g., the semantics of the target word paradigm Lehrer ‘teacher’ 

consists of
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target base number gender genericity

Lehrer 𝐿𝑒ℎ𝑟𝑒𝑟 + singular + masculine + generic

Lehrer 𝐿𝑒ℎ𝑟𝑒𝑟 + singular + masculine + explicit

Lehrerin 𝐿𝑒ℎ𝑟𝑒𝑟 + singular + feminine + explicit

Lehrer 𝐿𝑒ℎ𝑟𝑒𝑟 + plural + masculine + generic

Lehrer 𝐿𝑒ℎ𝑟𝑒𝑟 + plural + masculine + explicit

Lehrerinnen 𝐿𝑒ℎ𝑟𝑒𝑟 + plural + feminine + explicit
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form #le ler erA rA# ArI rIn In#

Lehrer 1 1 1 1 0 0 0

Lehrer 1 1 1 1 0 0 0

Lehrerin 1 1 1 0 1 1 1
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Learning comprehension

• Comprehension is learnt by linearly mapping the matrix of forms onto the 

matrix of semantic vectors
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Variables

• COMPREHENSION QUALITY

correlation of a target’s original and estimated vectors

higher correlation = higher comprehension quality

• NEIGHBOURHOOD DENSITY

correlation of a target with its 8 nearest neighbours

higher density = denser neighbourhood 

• ACTIVATION DIVERSITY

Euclidian norm of a target’s vector

higher norm = higher degree of co-activation

• STEREOTYPICALITY

adopted from Gabriel et al. (2008)
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Multinomial Logistic Regression

• dependent variable: TYPE

singular generic masculine; singular explicit masculine; singular explicit feminine

plural generic masculine; plural explicit masculine; plural explicit feminine

• explanatory variables

• ACTIVATION DIVERSITY

• PRINCIPAL COMPONENT (COMPREHENSION QUALITY + NEIGHBOURHOOD DENSITY)

• STEREOTYPICALITY JUDGEMENTS (Gabriel et al. 2008)

08/08/2023 36



Results

ACTIVATION DIVERSITY

08/08/2023 37

0 00

0 2 

0  0

0   

1 00

 
re
 
ic
te
 
  
ro
 
a
 
ili
ty

0 0

0 2

0  

 
re
 
ic
te
 
  
ro
 
a
 
ili
ty

 eminine    licit  a c line    licit  a c line  eneric

 

 eminine    licit  a c line    licit  a c line  eneric

 

         

 emantic acti ation  i er ity

       0  2  0 0        0  2  0 0        0  2  0 0

 emantic   ality    en ity

Singular Plural

2 2 2



Results

ACTIVATION DIVERSITY

08/08/2023 37

0 00

0 2 

0  0

0   

1 00

 
re
 
ic
te
 
  
ro
 
a
 
ili
ty

0 0

0 2

0  

 
re
 
ic
te
 
  
ro
 
a
 
ili
ty

 eminine    licit  a c line    licit  a c line  eneric

 

 eminine    licit  a c line    licit  a c line  eneric

 

         

 emantic acti ation  i er ity

       0  2  0 0        0  2  0 0        0  2  0 0

 emantic   ality    en ity

Singular Plural

2 2



Results

ACTIVATION DIVERSITY

08/08/2023 37

0 00

0 2 

0  0

0   

1 00

 
re
 
ic
te
 
  
ro
 
a
 
ili
ty

0 0

0 2

0  

 
re
 
ic
te
 
  
ro
 
a
 
ili
ty

 eminine    licit  a c line    licit  a c line  eneric

 

 eminine    licit  a c line    licit  a c line  eneric

 

         

 emantic acti ation  i er ity

       0  2  0 0        0  2  0 0        0  2  0 0

 emantic   ality    en ity

Singular Plural



Results

ACTIVATION DIVERSITY

08/08/2023 37

0 00

0 2 

0  0

0   

1 00

 
re
 
ic
te
 
  
ro
 
a
 
ili
ty

0 0

0 2

0  

 
re
 
ic
te
 
  
ro
 
a
 
ili
ty

 eminine    licit  a c line    licit  a c line  eneric

 

 eminine    licit  a c line    licit  a c line  eneric

 

         

 emantic acti ation  i er ity

       0  2  0 0        0  2  0 0        0  2  0 0

 emantic   ality    en ity

***

***

Singular Plural



Results

COMPREHENSION QUALITY + NEIGHBOURHOOD DENSITY

08/08/2023 38

0 00

0 2 

0  0

0   

1 00

 
re
 
ic
te
 
  
ro
 
a
 
ili
ty

0 0

0 2

0  

 
re
 
ic
te
 
  
ro
 
a
 
ili
ty

 eminine    licit  a c line    licit  a c line  eneric

 

 eminine    licit  a c line    licit  a c line  eneric

 

         

 emantic acti ation  i er ity

       0  2  0 0        0  2  0 0        0  2  0 0

 emantic   ality    en ity

Singular Plural



Results

COMPREHENSION QUALITY + NEIGHBOURHOOD DENSITY

08/08/2023 38

0 00

0 2 

0  0

0   

1 00

 
re
 
ic
te
 
  
ro
 
a
 
ili
ty

0 0

0 2

0  

 
re
 
ic
te
 
  
ro
 
a
 
ili
ty

 eminine    licit  a c line    licit  a c line  eneric

 

 eminine    licit  a c line    licit  a c line  eneric

 

         

 emantic acti ation  i er ity

       0  2  0 0        0  2  0 0        0  2  0 0

 emantic   ality    en ity

***

***

Singular Plural



Results

STEREOTYPICALITY JUDGEMENTS

08/08/2023 39

 eminine    licit  a c line    licit  a c line  eneric

2  0   2  0   2  0   
0 0

0 1

0 2

0  

 tereoty icality

 
re
 
ic
te
 
  
ro
 
a
 
ili
ty

no significant effects!

Singular Plural



Research questions

    

     

08/08/2023 40



Research questions

RQ 1
Does discriminative learning provide insight into the semantics of masculine 
generics, masculine explicits, and feminine explicits?

→ yes!

     

08/08/2023 40



Research questions

RQ 1
Does discriminative learning provide insight into the semantics of masculine 
generics, masculine explicits, and feminine explicits?

→ yes!

RQ 2
If so, how do the semantics of masculine generics differ from the semantics of 
masculine explicits and feminine explicits?

→well…

08/08/2023 40



Research questions

RQ 1
Does discriminative learning provide insight into the semantics of masculine 
generics, masculine explicits, and feminine explicits?

→ yes!

RQ 2
If so, how do the semantics of masculine generics differ from the semantics of 
masculine explicits and feminine explicits?

→well…

08/08/2023 40



Discussion
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• ACTIVATION DIVERSITY

• high for singular feminine forms

• medium for masculine forms

• low for plural feminine forms

• PRINCIPAL COMPONENT (COMPREHENSION QUALITY + NEIGHBOURHOOD DENSITY)

• feminine role nouns ‘live’ in their own part of the semantic space 

→ nearest neighbours are all other feminine role nouns

• feminine role nouns show interpretable exponent of their grammatical gender 

→ shift in semantic space
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• our findings are in line with assumptions found in previous research

• Stahlberg et al. (2001)

masculine gender of [masculine] generics has a semantic component 

of “maleness”

• Irmen & Linner (2005)

semantic similarity of generic and explicit masculines due to their resonance 

with the lexicon and each other

• Gygax et al. (2012) and Gygax et al. (2021)

generic masculines activate the underlying representations of explicit 

masculines, leading to a semantic activation of explicit masculines, thus a male 

bias
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• the masculine bias found in generic masculines is due to their underlying semantic 

features which they share with explicit masculines

• the language itself is the reason for the masculine bias, not any non-linguistic 

influences

• our findings confirm the bias found in previous behavioural studies (e.g. Demarmels, 2017; 

Garnham et al., 2012; Gygax et al., 2008; Irmen & Kurovskaja, 2010; Irmen & Linner, 2005; Koch, 2021; Misersky et 

al., 2019; Stahlberg & Sczesny, 2001)

• future research will show

• whether the LDL measures computed for our data are predictive of behavioural measures

• how (new & allegedly) more neutral forms, e.g. Lehrer*innen, LehrerInnen, perform
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• using data from news websites allowed us to strictly control for genre

• our results cannot be potential artefacts of ‘genre confusion’, i.e. of chance 

due to an uncontrolled mix of different styles and genres

• however, this indicates that chances are given that other 

sources/genres/styles might lead to different results

• our corpus did not contain any ‘new forms’, e.g. gender star forms or 

capital-I forms: Lehrer*in or LehrerIn ‘teacher (of any sex or gender)’

• hence our simulated lexicon will not be ‘confused’ by such forms / if the 

generic masculine shows a bias, it is not due to such new forms
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weights for all target words, inflectional functions, and a huge number of 

other words

• taking these rows of association weights, we obtain semantic vectors of 

individual words and inflectional functions of length 7,500

• for example:
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all teacher PLURAL be nice villain evil

teacher 0.31 1.0 0.57 0.43 0.15 0.00071 0.0007

villain 0.0003 0.001 0.0005 0.0004 0.0091 1.0 0.96
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