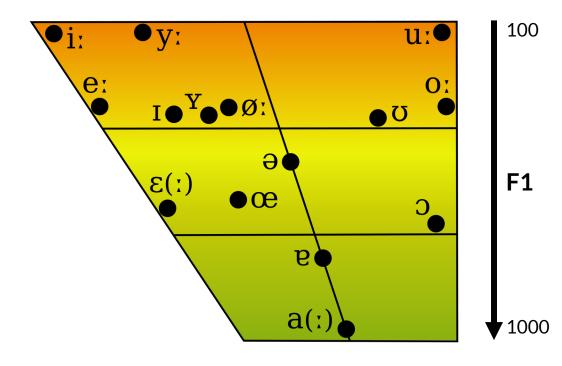


Cuteness modulates size sound symbolism at its extremes

Dominic Schmitz

Background

Cuteness modulates size sound symbolism at its extremes



Background: Size

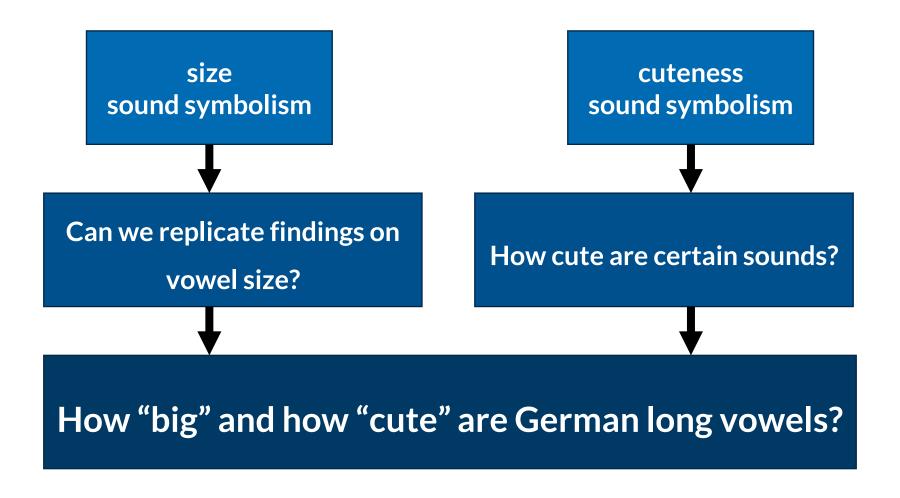
- Sapir (1929)

 /a/ → big
 /i/ → small
- Blasi et al. (2016)
 /i/ → small
- Knoeferle et al. (2017)
 high F1 → bigger
- Kawahara et al. (2018)
 lower F1 → smaller
- Winter & Perlman (2021)

 /a/ → big
 /i/ → small
- Chang et al. (2021)
 /a/ → big
 /i, u/ → small

Background

Cuteness modulates size sound symbolism at its extremes



Background: Cuteness

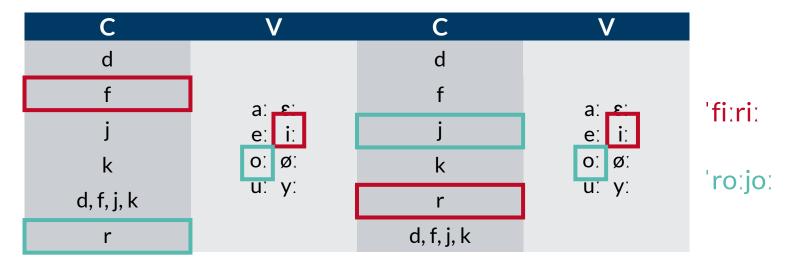
- cuteness may be seen as a special type of shape
- shape has been investigated consistently
 - → the infamous bouba vs. kiki (e.g. Ćwiek et al., 2022)
- cuteness is a fundamental feature of human perception and correlates with size (Kringelbach et al., 2016)
 - → well-known "baby schema" (Lehmann et al., 2013)
- research on Japanese has shown that cuteness is also found as sensory information to be combined with speech sound (Kumagai, 2019)
 - \rightarrow /p/ is the "cutest" sound

Research questions

Forced-choice task

size meets cuteness

Stimuli


- pseudowords to remove effects of real-world or lexical knowledge (Caselli et al., 2016; Gahl, 2008)
- pseudoword structure
 - disyllabic, stress on first syllable
 - onsets: /d, f, j, k, r/; coda: none
 - nuclei: German long vowels /aː, εː, eː, iː, oː, øː, uː, yː/

С	V	С	V
d		d	
f	aː ɛː	f	aː ɛ ː
j	eː iː	j	eː iː
k	oː øː	k	oː øː
d, f, j, k	uː yː	r	uː yː
r		d, f, j, k	

Stimuli

- pseudowords to remove effects of real-world or lexical knowledge (Caselli et al., 2016; Gahl, 2008)
- pseudoword structure
 - disyllabic, stress on first syllable
 - onsets: /d, f, j, k, r/; coda: none
 - nuclei: German long vowels /aː, εː, eː, iː, oː, øː, uː, yː/

Stimuli

- each of the resulting 96 pseudowords was produced three times by a native speaker of German
- the best recording for each pseudoword was chosen as audio stimulus
- the audio stimuli were matched with visual stimuli (van de Vijver & Baer-Henney,
 2014) as participants were told that pseudowords were names of alien
 creatures

 fully randomised matching of audio & visual stimuli to control for semantic effects (cf. Schmitz et al., 2021)

Procedure

the experiment setup consisted of three parts

1. size judgement task

5 differently sized versions of a visual stimulus were presented

- 1 audio stimulus was played
- participants were to decide which image fitted the audio best by mouseclicking on the pertinent image as fast as possible

Procedure

the experiment setup consisted of three parts

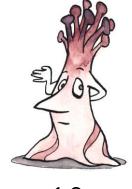
2. cuteness judgement task

1 version of a visual stimulus was presented

- all visual stimuli were presented with the same size
- participants were to judge how cute a creature was on a 5-point Likert scale ranging from *nicht niedlich* 'not cute' to *sehr niedlich* 'very cute'

Procedure

- the experiment setup consisted of three parts
- 3. brief personal info questionnaire
 - age
 - L1s
 - L2s


Analysis

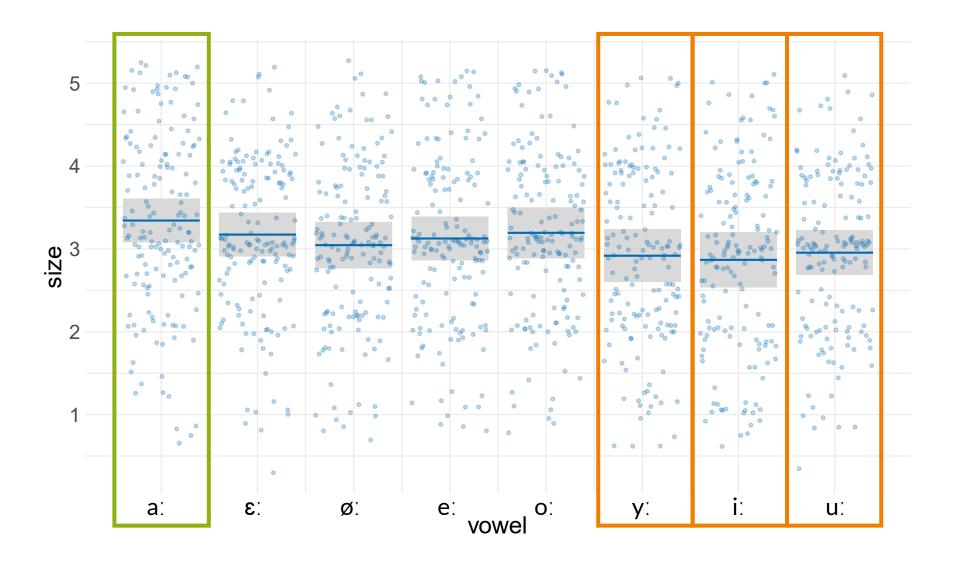
the biggest and the smallest pseudowords

the cutest and the least cute creatures

1.8

Analysis

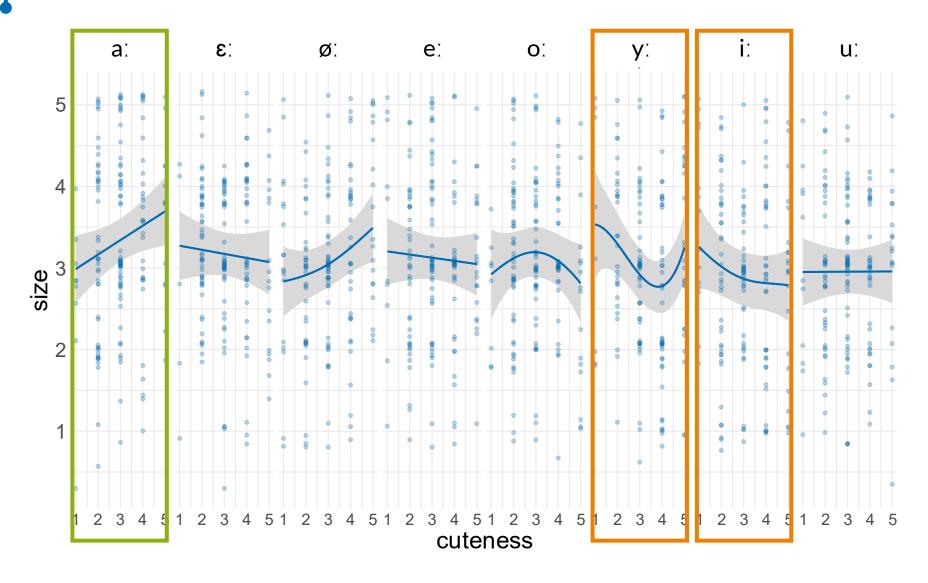
- data of 21 participants (n = 1248) entered a generalised additive mixed model regression analysis after data cleaning
- dependent variable
 - size judgement
- independent variables
 - cuteness judgement * vowel
 - phonological neighbourhood density
 - first onset consonant, second onset consonant
 - participant
 - discarded: L1s, L2s, age due to distribution of data


Analysis

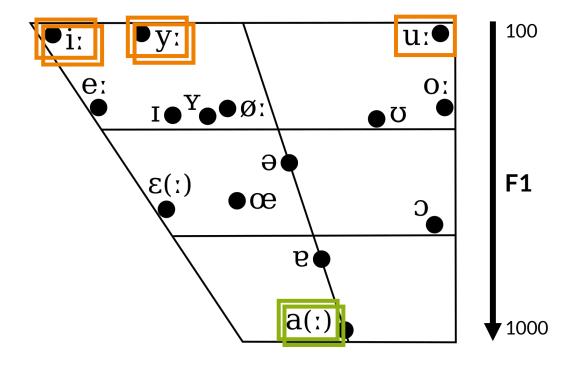
 data of 21 participants (n = 1248) entered a generalised additive mixed model regression analysis after data cleaning

```
gam(size ~
      s(cuteness, bs = "bs", by = vowel, k = 5) +
      vowel +
      s(phonological_neighbourhood_density, k = 7) +
      s(onset_1, bs = "re") +
      s(onset 2, bs = "re") +
      s(participant, bs = "re"),
   data = data_fin)
```


Results: Size

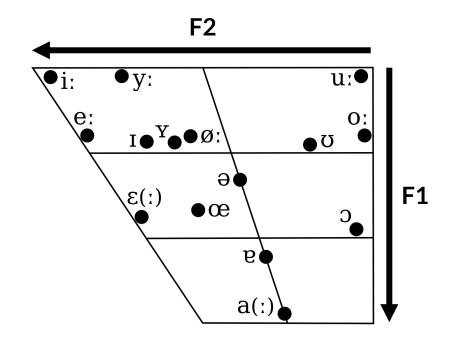


Results: Size



Results: Size & cuteness

Results: Size & cuteness



Discussion

- size
 - /aː/ is biggest
 - /iː, uː, yː/ are smallest
 - \rightarrow in line with previous findings

cuteness

- no effect on its own
- amplifies size effect for /aː, iː, yː/
- no effect found for /uː/
 - → potentially connected to frontness/F2

Discussion

- further research into the interaction of size and cuteness is called for
 → a replication with 4 times as many participants is currently underway
- neglecting further sources while considering but one might lead to undiscovered interferences and/or patterns in reported findings
- the present findings thus call for the incorporation of multiple dimensions of sensory information in research on sound symbolism where applicable

References

- Blasi, D. E., Wichmann, S., Hammarström, H., Stadler, P. F., & Christiansen, M. H. (2016). Sound-meaning association biases evidenced across thousands of languages. *Proceedings of the National Academy of Sciences of the United States of America*, 113(39), 10818–10823. https://doi.org/10.1073/PNAS.1605782113
- Caselli, N. K., Caselli, M. K., & Cohen-Goldberg, A. M. (2016). Inflected words in production: Evidence for a morphologically rich lexicon. *Quarterly Journal of Experimental Psychology*, 69(3), 432–454. https://doi.org/10.1080/17470218.2015.1054847
- Chang, Y. H., Zhao, M., Chen, Y. C., & Huang, P. C. (2021). The effects of Mandarin Chinese lexical tones in sound-shape and sound-size correspondences. *Multisensory Research*, 35(3), 243–257. https://doi.org/10.1163/22134808-BJA10068
- Ćwiek, A., Fuchs, S., Draxler, C., Asu, E. L., Dediu, D., Hiovain, K., Kawahara, S., Koutalidis, S., Krifka, M., Lippus, P., Lupyan, G., Oh, G. E., Paul, J., Petrone, C., Ridouane, R., Reiter, S., Schümchen, N., Szalontai, Á., Ünal-Logacev, Ö., ... Winter, B. (2022). The bouba/kiki effect is robust across cultures and writing systems. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 377(1841). https://doi.org/10.1098/rstb.2020.0390
- Gahl, S. (2008). Time and thyme are not homophones: The effect of lemma frequency on word durations in spontaneous speech. *Language*, 84(3), 474–496. https://doi.org/10.1353/lan.0.0035
- Kawahara, S., Noto, A., & Kumagai, G. (2018). Sound symbolic patterns in Pokémon names. *Phonetica*, 75(3), 219–244. https://doi.org/10.1159/000484938
- Knoeferle, K., Li, J., Maggioni, E., & Spence, C. (2017). What drives sound symbolism? Different acoustic cues underlie sound-size and sound-shape mappings. *Scientific Reports*, 7(1), 5562. https://doi.org/10.1038/s41598-017-05965-v
- Kringelbach, M. L., Stark, E. A., Alexander, C., Bornstein, M. H., & Stein, A. (2016). On cuteness: Unlocking the parental brain and beyond. *Trends in Cognitive Sciences*, 20(7), 545–558. https://doi.org/10.1016/j.tics.2016.05.003
- Kumagai, G. (2019). A sound-symbolic alternation to express cuteness and the orthographic Lyman's Law in Japanese. *Journal of Japanese Linguistics*, 35(1), 39–74. https://doi.org/10.1515/jil-2019-2004
- Lehmann, V., Huis in't Veld, E. M. J., & Vingerhoets, A. J. J. M. (2013). The human and animal baby schema effect: Correlates of individual differences. *Behavioural Processes*, 94, 99–108. https://doi.org/10.1016/j.beproc.2013.01.001
- Sapir, E. (1929). A study in phonetic symbolism. Journal of Experimental Psychology, 12(3), 225–239. https://doi.org/10.1037/H0070931
- Schmitz, D., Plag, I., Baer-Henney, D., & Stein, S. D. (2021). Durational differences of word-final /s/ emerge from the lexicon: Modelling morpho-phonetic effects in pseudowords with linear discriminative learning. *Frontiers in Psychology*, 12. https://doi.org/10.3389/fpsyg.2021.680889
- van de Vijver, R., & Baer-Henney, D. (2014). Developing biases. Frontiers in Psychology, 5. https://doi.org/10.3389/fpsyg.2014.00634
- Winter, B., & Perlman, M. (2021). Size sound symbolism in the English lexicon. *Glossa*: A *Journal of General Linguistics*, 6(1). https://doi.org/10.5334/gjgl.1646